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The famous Laws
Equilibrium Principle -- minus first Law

An isolated, macroscopic system which is placed in an arbitrary
initial state within a finite fixed volume will attain a unique
state of equilibrium.

Second Law (Clausius)
For a non-quasi-static process occurring in a thermally isolated
system, the entropy change between two equilibrium states is
non-negative.

Second Law (Kelvin)
No work can be extracted from a closed equilibrium system
during a cyclic variation of a parameter by an external source.
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MINUS FIRST LAW vs. SECOND LAW
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2nd Law



Entropy in Stat. Mech. 
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Specific heat of small grains at low T
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10 PRINCIPLES OF STATISTICAL MECHANICS [Ch. 1, § 6 

gives an approximation to the number of states below E for a system con
sisting of N identical particles. The indistinguishability of identical particles 
introduces the denominator N! in the above expression because the N! 
classical statest arising from a given phase pointp1 , x 1, • • • PN• xN must be 
identified with each other by this principle (see the Note to Chapter 2, 
problem 33 for a more rigorous discussion). 
NoTE: The denominator N! was very difficult to understand before the 
principle of the indistinguishability of identical particles was introduced into 
quantum mechanics. In spite of this, the necessity for this denominator term 
had long been recognized in order to make the entropy defined by (1.18) an 
extensive quantity as it should be. 

§ 1.6. NORMAL SYSTEMS IN STATISTICAL THERMODYNAMICS 

Asymptotic forms of the number of states and state density of a macroscopic 
system: A system consisting of a great number of particles, or of a system 
with an indefinite number of particles but with a volume of macroscopic 
extension usually has a number of states Q 0 (1D which show.; the following 
properties (in which case the system will be called normal in the statistical
thermodynamic sense): 

(l) When the number N of particles (or the volume V) is large, the number 
of states Q 0 (E) approaches asymptotically to 

no -exp{N¢(~)} 

no- exp{N¢(~·~)} 

or 

or 

exp{ v~( ~)}, 

exp{v~(~·~)}· 

(1.24a) 

(1.24b) 

If EfN (or E/V) is looked upon as a quantity of the order of 0(1) tt, ¢is also 
0(1) (the same holds for ~), and 

¢ > 0, ¢'>0, ¢" <0. (1.25) 
(2) Therefore 

n = dn0 jd£ = ¢' exp(N¢) > 0, 

(1.26) 

t When some of (p1, Xt), (p2, x2) . . . (pN, XN) coincide with each other, the number of 
classical states produced by the permutation of particle states is less than N !. But the 
chance for such coincidence is negligible in the limit of h - 0. 
tt One writes y = O(x) and z = o(x) if lim y/x = finite '# 0 and lim z/x = 0. 

X--+ OXl X-+ OXl 
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Ch. 1, § 7) NORMAL SYSTEMS IN STATISTICAL THERMODYNAMICS 11 

When N (or V) is large, Q 0 or Q increases very rapidly with energy E. No 
general proof of these properties will be attempted here. If a system existed 
which did not have these properties, it would show a rather strange macro
scopic behavior, very different from ordinary thermodynamic systems (see 
example 4, Chapter 1). 

Entropy of a normal system: For the statistical entropy defined by (1.18), 
one finds the following from ( 1.24)-(1.26): 

(I) S = klog{Q(E)oE} ~ klog00(E) = kN¢. (1.27) 

The error involved here is o(N) (or o( V)), and so is negligible for a macro
scopic system (for which N, V, orE is very large). 

(2) The statistical temperature T(E) is introduced by means of the defini-

tion, 
as 1 

aE T 
(1.28) 

{ 
1 I \ T(E) =- > 0. (1.29) 

k¢' ~' 

By (1.24) and (1.25) it will be shown later that this temperature in fact agrees 
with the thermodynamic temperature (see§ 1.9). 

The allowance of the energy and the definition of entropy: By (1.24)-(1.26), 
the function Q 0 (E) is positive and increases monotonically with E. Therefore 
one has 

Q(E)oE < Q0(E) < Q(E)E, 

thus S = k log Q(E)oE < k log Q0(E) < k log Q(E)E. 

Also by (1.24) and (1.25) and using the fact that E = O(N), one finds: 

k{logQ(E)E -logQ0(E)} = klogE·¢' = O(logN) = o(N) (or o(V)) 
and 

k{logQ(E)E -logQ(E)oE} = klogEfoE = o(N)t (or o (V)). 

Therefore (1.27) is seen to be valid. 

§ 1.7. CONTACf BETWEEN TWO SYSTEMS 

There can be various kinds of interactions between two systems in contact. 

t If one supposes that logE/bE= O(N) = a.N, then bE= E exp ( -a.N). According to 
the uncertainty principle (1.16) the time of the observation tis then t ~ h/bE = (h/E)exp a.N. 
If ex = 0(1), this t is astronomically long for a macroscopic system. Therefore, for a t 
of ordinary length, bE cannot be so small and thus one must have log E/bE = o(N) 
(namely ex = o(l)). 
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Ch. 1, § 14] PARTITION.FUNCfiONS AND TIIERMODYNAMIC FUNCTIONS 25 

This distribution is derived in the same way as the canonical or grand canonical 
distributions. 
NoTE: The T-p distribution and the T-p distribution, like the canonical 
distribution, can be applied irrespective of the size of the system under 
consideration. 

§ 1.14. PARTITION FUNCTIONS AND THERMODYNAMIC FUNCTIONS 

The microcanonical, canonical, T-p (grand canonical) and T-p distributions 
are the distributions for given energy (E = constant), given temperature 
(T = constant), given temperature and chemical potential (T = constant, p, = 
constant) and given temperature and pressure (T = constant,p = constant), 
respectively. If the system is macroscopir:, then the thermodynamic function 
(potential) for each of these prescribed conditions is derived from each 
partition function. This is summarized in the following table: 

Partition function Thermodynamic function Distribution I 
--------------------~----------------------

Microcanonical 

Canonical 

Q(E, V, N)~E 
or !1o(E, V, N) 

Z(T, V,N) 
= 'f,e-EdV,N)/kT 

~ 

= fe- EtkTQ(E, V, N) dE 
0 

Grand canonical E( T, V, J.l) 
~ 

( T-J.l distribution) - 'f, eN JJ/kT Z ( T, V, N) 

QO 

- L ).NZ(T, v, N) 
N-o 

T-p distribution Y(T,p, N} 
QO 

= f e - PV/kTZ(T, V, N) dV 
0 

- ·- ._, ___ __ ., ____ ,_, ________ .. • ( f:i/~. 

S(E, V, N) = k log Q(E, V, N)oE 
or = k log Do(£, V, N) 

F(T, V, N) = - kTlog Z(T, V, N) 
lfi(T, V, N) = k log Z(T, V, N) 

J ( T, V, J.l) = - p V = F - G 

= - kTiog E(T, V, J.l) 

q(T, V,J.l) = klogE(T, V,J.l) 

G(T,p, N) = - kTlog Y(T,p, N) 

<P(T, p, N) = k log Y(T,p, N) 

" ,_ ____ .. ___________ _ 
In statistical mechanics, the thermodynamic relations between thermo
dynamic functions are derived as the relations between certain average 
values obtained from probability laws suitable for the description of the 
given conditions. Well known transformations (Legendre transformations) 
for the thermodynamic functions are derived by approximating the partition 
function Z, E, or Y by taking the maximum term in the sum or the integral. 
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Boltzmann     vs.      Gibbs

2

II. MICROCANONICAL DISTRIBUTIONS AND
ENTROPY DEFINITIONS

A. Setup

We consider strictly isolated classical or quantum sys-
tems described by a Hamiltonian H(⇠;Z) where ⇠ de-
notes the microscopic states and Z = (Z1, . . .) com-
prises external control parameters. It will be assumed
throughout that the microscopic dynamics conserves the
energy E, that the energy is bounded from below, E � 0,
and that an ensemble of such systems is described by the
microcanonical density operator

⇢(⇠|E,Z) =
�(E �H)

!
, (1)

where the non-negative normalization constant is given
by the DoS

!(E,Z) = Tr[�(E �H)] � 0 (2)

For classical systems, the trace is defined as a phase-space
integral and for quantum system by a sum or integral
over the basis vectors of the underlying Hilbert space.
The energy derivative of the DoS will be denoted by

⌫(E,Z) = @!/@E, (3)

and the integrated DoS is defined as

⌦(E,Z) = Tr[⇥(E �H)], (4)

so that ! = @⌦/@E (with ⇥ denoting the unit-step func-
tion). We shall assume throughout that ! is continuous
and piecewise di↵erentiable, so that its partial derivatives
are well-defined except for a countable number of singu-
lar points. The expectation value of an observable F (⇠)
with respect to the microcanonical density operator ⇢ is
defined by

hF iE,Z = Tr[F⇢]. (5)

As a special case, the probability density of some observ-
able F (⇠) is given by

%F (f |E,Z) = h�(f � F )iE,Z . (6)

To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
by averaging over microstates that are confined to the
energy shell E.

We adopt units such that the Boltzmann constant
kB = 1. For a given entropy function S(E,Z), the mi-
crocanonical temperature T and the heat capacity C are

obtained according to the rules of thermodynamics by
partial di↵erentiation,

T (E,Z) ⌘
✓
@S

@E

◆�1

, C(E,Z) =

✓
@T

@E

◆�1

. (7)

It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).

To simplify notation, when writing formulas that con-
tain !,⌦, T , etc., we will not explicitly state the func-
tional dependence on Z anymore, while keeping in mind
that the Hamiltonian can contain several additional con-
trol parameters.

B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.

1. Gibbs entropy

The Gibbs entropy is defined by [1, 2]

SG(E) = ln⌦. (8a)

The associated Gibbs temperature

TG(E) =
⌦

!
(8b)

is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,

TG =

⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (9)

We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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FIG. 1: Non-uniqueness of microcanonical temperatures illustrated for the integrated DoS from Eq. (19). Left: DoS ! (blue)
and integrated DoS ⌦ (black). Center: Boltzmann entropy SB (blue) and Boltzmann temperature TB (red). Right: Gibbs
entropy SG (black) and Gibbs temperature TG (red). This example shows that, in general, neither the Boltzmann nor the
Gibbs temperature uniquely characterize the thermal state of an isolated system, as the same temperature value can correspond
to very di↵erent energy values. In particular, this means that the microcanonical temperatures of two isolated systems before
thermal coupling generally do not specify the direction of heat flow between the two systems after coupling. Assuming all other
external parameter are kept fixed when two initially isolated systems are brought into contact, the heat transfer between them
has to be computed by comparing the fixed energies E1 and E2 before coupling with the mean energies hE1i12 and hE2i12 after
coupling, where the averages h · i12 are taken with respect to the microcanonical distribution of the combined system at fixed
total energy E12 = E1 + E2 after the coupling.

where ✏ is a small energy constant required to make
the argument of the logarithm dimensionless. The fact
that the definition of SB requires an additional energy
constant ✏ is conceptually displeasing but bears no rele-
vance for physical quantities that are related to deriva-
tives of SB.
The associated Boltzmann temperature

TB(E) =
!

⌫
(11)

becomes negative when ! is a decreasing function of the
energy E, for ⌫ = @!/@E < 0 in this case. Boltzmann
temperature and Gibbs temperature are related by [2]

TB =
TG

1� C�1
G

, (12)

where CG = (@TG/@E)�1 is the Gibbs heat capacity
measured in units of kB. Thus, a small positive Gibbs
heat capacity 0 < CG(E) < 1 implies a negative Boltz-
mann temperature TB < 0 and vice versa.

Unlike the Gibbs temperature TG, the Boltzmann tem-
perature TB does not satisfy the equipartition theorem
for classical Hamiltonian systems,

TB 6=
⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (13)

3. Di↵erential Boltzmann entropy

The energy constant ✏ in Eq. (10a) is sometimes in-
terpreted as a small uncertainty in the system energy E.
Strictly speaking, this interpretation is mathematically
redundant since, according to the postulates of classi-
cal and quantum, systems can at least in principle be

prepared in well-defined energy eigenstates. However,
ignoring this fact for the moment, the uncertainty inter-
pretation suggest a modified microcanonical phase space
probability density [1]

⇢̃(⇠;E, ✏) =
⇥
�
E + ✏�H

�
⇥
�
H � E

�

⌦(E + ✏)� ⌦(E)
. (14)

The Shannon information entropy of this modified den-
sity operator is given by

SD(E, ✏) = �Tr [⇢̃ ln ⇢̃]

= ln [⌦(E + ✏)� ⌦(E)] .
(15a)

Eq. (14) was already discussed by Gibbs [1]. From SD,
one can recover the Boltzmann entropy by expanding the
argument of logarithm for ✏ ! 0,

SD ⇡ ln(✏ !) = SB. (15b)

Note that this is not a systematic Taylor-expansion of SD

itself, but rather of exp(SD). The associated temperature

TD(E, ✏) =
⌦(E + ✏)� ⌦(E)

!(E + ✏)� !(E)
(16a)

approaches for ✏ ! 0 the Boltzmann temperature

TD ⇡ !

⌫
= TB. (16b)

The explicit ✏-dependence in Eq. (16a) disqualifies SD

from being an generic entropy definition for any finite
✏ > 0. We therefore focus below only on the limit ✏ ! 0,
corresponding to Boltzmann entropy SB.
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prises external control parameters. It will be assumed
throughout that the microscopic dynamics conserves the
energy E, that the energy is bounded from below, E � 0,
and that an ensemble of such systems is described by the
microcanonical density operator

⇢(⇠|E,Z) =
�(E �H)

!
, (1)

where the non-negative normalization constant is given
by the DoS

!(E,Z) = Tr[�(E �H)] � 0 (2)

For classical systems, the trace is defined as a phase-space
integral and for quantum system by a sum or integral
over the basis vectors of the underlying Hilbert space.
The energy derivative of the DoS will be denoted by

⌫(E,Z) = @!/@E, (3)

and the integrated DoS is defined as

⌦(E,Z) = Tr[⇥(E �H)], (4)

so that ! = @⌦/@E (with ⇥ denoting the unit-step func-
tion). We shall assume throughout that ! is continuous
and piecewise di↵erentiable, so that its partial derivatives
are well-defined except for a countable number of singu-
lar points. The expectation value of an observable F (⇠)
with respect to the microcanonical density operator ⇢ is
defined by

hF iE,Z = Tr[F⇢]. (5)

As a special case, the probability density of some observ-
able F (⇠) is given by

%F (f |E,Z) = h�(f � F )iE,Z . (6)

To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
by averaging over microstates that are confined to the
energy shell E.

We adopt units such that the Boltzmann constant
kB = 1. For a given entropy function S(E,Z), the mi-
crocanonical temperature T and the heat capacity C are

obtained according to the rules of thermodynamics by
partial di↵erentiation,

T (E,Z) ⌘
✓
@S

@E

◆�1

, C(E,Z) =

✓
@T

@E

◆�1

. (7)

It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).
To simplify notation, when writing formulas that con-

tain !,⌦, T , etc., we will not explicitly state the func-
tional dependence on Z anymore, while keeping in mind
that the Hamiltonian can contain several additional con-
trol parameters.

B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.

1. Gibbs entropy

The Gibbs entropy is defined by [1, 2]

SG(E) = ln⌦. (8a)

The associated Gibbs temperature

TG(E) =
⌦

!
(8b)

is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,

TG =

⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (9)

We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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Summary
● Entropy candidates for isolated systems:

entropy S(E) 0th law 1st law 2nd law equipart.
...other...
Boltzmann ln(ϵω) no no no no
Gibbs ln(Ω) yes* yes yes yes



Example 1:    Classical ideal gas

Using simply the properties of the MC density operator, one derives [? ] from the above
requirements that the MC entropy S equals the Gibbs entropy SG:

aµ = −Tr

[(
∂H

∂Aµ

)
δ(E −H)

ω

]
= − 1

ω
Tr

[
− ∂

∂Aµ
Θ(E −H)

]

=
1

ω

∂

∂Aµ
Tr

[
Θ(E −H)

]
= TG

(
∂SG

∂Aµ

)
.

(12)

This proves that only the pair (ρ, SG) constitutes a consistent thermostatistical model based on
the MC density ρ. As a corollary, the Boltzmann SB is not a thermodynamic entropy of the MC
ensemble.

In a similar way, one can show by a straightforward calculation that, for standard classical
Hamiltonian systems, only the Gibbs temperature TG satisfies the mathematically rigorous10

equipartition theorem [9]
〈

ξi
∂H

∂ξj

〉
≡ Tr

[(
ξi

∂H

∂ξj

)
ρ

]
= kBTG δij (13)

for all canonical coordinates ξ = (ξ1, . . .). Equation (13) is essentially a phase-space version
of Stokes’ theorem, relating a surface (flux) integral on the energy shell to the enclosed phase
space volume.

1.3 Basic examples
Ideal gas. The differences between SB and SG are negligible for most macroscopic systems
with monotonic DoS ω, but can be significant for small systems. This can already be seen for a
classical ideal gas in d-space dimensions, where [13]

Ω(E, V ) = αEdN/2V N , α =
(2πm)dN/2

N !hdΓ(dN/2 + 1)
, (14)

for N identical particles of mass m and Planck constant h. From this, one finds that only the
Gibbs temperature yields exact equipartition

E =

(
dN

2
− 1

)
kBTB, (15)

E =
dN

2
kBTG. (16)

Note that Eq. (15) yields a paradoxical results for dN = 1, where it predicts a negative tem-
perature TB < 0 and heat capacity, and also for dN = 2, where the temperature TB must be

10The direct proof of (13) requires mild assumptions such as confined trajectories and a finite groundstate en-
ergy. The key steps are very similar to those in (12), i.e., one merely needs to exploit the chain rule relation
∂Θ(E −H)/∂λ = −(∂H/∂λ)δ(E −H), which holds for any variable λ appearing in the Hamiltonian H .
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1.1 Entropy and temperature definitions
To make the discussion more specific, let us consider a (quantum or classical) system with
microscopic variables ξ governed by the Hamiltonian H = H(ξ; V, A), where V denotes vol-
ume and A = (A1, . . .) summarizes other external parameters. Assuming that the dynamics
conserves the energy, E = H , all thermostatistical properties are contained in the MC density
operator5

ρ(ξ; E, V,A) =
δ(E −H)

ω
, (1)

which is normalized by the DoS

ω(E, V,A) = Tr[δ(E −H)]. (2)

For classical systems, the trace simply becomes a phase-space integral over ξ. For brevity, we
denote averages of some quantity F with respect to the MC density operator ρ by 〈F 〉 ≡ Tr[Fρ].

We also define the integrated DoS6

Ω(E, V,A) = Tr[Θ(E −H)], (3)

which is related to the DoS ω by differentiation with respect to energy,

ω =
∂Ω

∂E
≡ Ω′. (4)

Given the MC density operator (1), one can find two competing definitions for the MC
entropy in the literature [9, 10, 13, 15, 16, 17]

SB(E, V,A) = kB ln[εω(E)], (5)
SG(E, V,A) = kB ln[Ω(E)], (6)

where ε is a constant with dimensions of energy, required to make the argument of the logarithm
dimensionless7. The first proposal, SB, usually referred to as Boltzmann entropy, is advocated
by the majority of modern textbooks [16] and used by most authors nowadays. The second
candidate SG is often attributed to P. Hertz8 [18] but was in fact already derived by J. W. Gibbs
in 1902 in his discussion of thermodynamic analogies [10, Chapter XIV]. For this reason, we

5As usual, we assume that, in the case of quantum systems, Eq. (1) has a well-defined operator interpretation,
e.g., as a limit of an operator series.

6Intuitively, for a quantum system with spectrum {En}, the quantity Ω(En, V, A) counts the number of eigen-
states with energy less or equal to En.

7Apart from other more severe shortcomings of SB, it is aesthetically displeasing that its definition requires
the !  "#$ introduction of some undetermined constant.

8Hertz proved in 1910 that SG is an adiabatic invariant [18]. His work was highly commended by Planck [19]
and Einstein, who closes his comment [20] on Hertz’s work with the famous statement that he himself would not
have published certain papers, had he been aware of Gibbs’ comprehensive treatise [10].
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First law

7

This proves that the mean Boltzmann temperature does
not satisfy the zeroth law.

Instead, the first line in Eq. (31), combined with
Eq. (21c), suggests that the Boltzmann temperature sat-
isfies the following relation for the inverse temperature

⌧
1

TBA

�

E

=

⌧
1

TBB

�

E

=
1

TB(E)
. (32)

It should be stressed, however, that Eq. (32) is not equiv-
alent to Eq. (28) and therefore also disagrees with the
zeroth law as stated in Eq. (26).

It is sometimes argued that the Boltzmann tempera-
ture characterizes the most probable energy state E⇤

i of
a subsystem i and that the corresponding temperature
values TBi(E

⇤
i ) coincides with the temperature of the

compound system TB(E). To investigate this statement,
consider i = A and recall that the probability ⇡A(EA|E)
of finding the first subsystem A at energy EA becomes
maximal either at a non-analytic point (e.g., a bound-
ary value of the allowed energy range), or at a value E⇤

A
satisfying

0 =
@⇡A(EA|E)

@EA

����
EA=E⇤

A

. (33)

Inserting ⇡A(EA|E) from Eq. (23b), one thus finds

TBA(E
⇤
A) = TBB(E � E⇤

A). (34)

Note, however, that in general

TB(E) 6= TBA(E
⇤
A) = TBB(E � E⇤

A), (35)

with the values TBi(E
⇤
i ) depending on the specific decom-

position into subsystems. This shows that the Boltzmann
temperature TB is in general not equal to the ‘most prob-
able’ Boltzmann temperature TBi(E

⇤
i ) of an arbitrarily

chosen subsystem.

3. Other temperatures

It is straightforward to verify through analogous calcu-
lations that, similar to the Boltzmann temperature, the
temperatures derived from the other entropy candidates
in Sec. II B violate the CTA condition (25) and, therefore,
also the zeroth law (26).

In summary, only the Gibbs temperature satisfies the
zeroth law of thermodynamics.

IV. FIRST LAW

The first law of thermodynamics is the statement of
energy conservation. That is, any change in the inter-
nal energy dE of an isolated system is caused by heat
transfer �Q from or into the system and external work
�A performed on or by the system,

dE = �Q+ �A

= T dS �
X

n

pndZn, (36)

where the pn are the generalized pressure variables.
Specifically, pure work �A corresponds to an adiabatic
variation of the parameters Z = (Z1, . . .) of the Hamil-
tonian H(⇠;Z). Heat transfer �Q = TdS comprises all
other forms of energy exchange (controlled injection or
release of photons, etc.). Subsystems within the isolated
system can permanently exchange heat although the to-
tal energy remains conserved in such internal energy re-
distribution processes.

The formal di↵erential relation (36) is trivially satisfied
for all the entropy definitions listed in Sec. II B, but addi-
tional constraints arise from the fact that the generalized
pressure variables pn should agree with the correspond-
ing microcanonical expectation values. This requirement
leads to the consistency relation [2]

pj = T

✓
@S

@Zj

◆

E,Zn 6=Zj

!
= �

⌧
@H

@Zj

�

E

, (37)

which can be derived from the Hamiltonian or Heisenberg
equations of motion (see Supplementary Information of
Ref. [2]). Subscripts on the lhs. of Eq. (37) indicate
quantities that are kept constant during di↵erentiation.
Equation (37) is physically relevant as it ensures that
abstract thermodynamic observables agree with the sta-
tistical averages.

As discussed in Ref. [2], any function of ⌦(E) satisfies
Eq. (37), implying that the Gibbs entropy, the comple-
mentary Gibbs entropy and the Penrose entropy are ther-
mostatistically consistent with respect to this specific cri-
terion. By contrast, the Boltzmann entropy SB = ln(✏!)
violates Eq. (37) for finite systems of arbitrary size [2].

V. SECOND LAW

The second law of thermodynamics governs the in-
crease of entropy under rather general conditions. Un-
fortunately, this law is sometimes stated in ambiguous
form, and several authors appear to prefer di↵erent non-
equivalent versions. Fortunately, in the case of isolated
systems, it is relatively straightforward to identify a
meaningful minimal version of the second law – originally
proposed by Planck – that imposes a testable constraint
on the microcanonical entropy candidates. However, be-
fore focussing on Planck’s formulation, let us briefly ad-
dress two other rather popular versions that are not ap-
propriate when dealing with isolated systems.

The perhaps simplest form of the second law states
that the entropy of an isolated system never decreases.
For isolated systems described by the MCE, this state-
ment is meaningless for the entropy of an isolated equi-
librium system at fixed energy is constant, regardless of
the chosen entropy definition.

Another naive version of the second law, based on an
oversimplification of Clausius’ original statement [? ], as-
serts that heat never flows spontaneously from a colder to
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release of photons, etc.). Subsystems within the isolated
system can permanently exchange heat although the to-
tal energy remains conserved in such internal energy re-
distribution processes.

The formal di↵erential relation (36) is trivially satisfied
for all the entropy definitions listed in Sec. II B, but addi-
tional constraints arise from the fact that the generalized
pressure variables pn should agree with the correspond-
ing microcanonical expectation values. This requirement
leads to the consistency relation [2]
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which can be derived from the Hamiltonian or Heisenberg
equations of motion (see Supplementary Information of
Ref. [2]). Subscripts on the lhs. of Eq. (37) indicate
quantities that are kept constant during di↵erentiation.
Equation (37) is physically relevant as it ensures that
abstract thermodynamic observables agree with the sta-
tistical averages.

As discussed in Ref. [2], any function of ⌦(E) satisfies
Eq. (37), implying that the Gibbs entropy, the comple-
mentary Gibbs entropy and the Penrose entropy are ther-
mostatistically consistent with respect to this specific cri-
terion. By contrast, the Boltzmann entropy SB = ln(✏!)
violates Eq. (37) for finite systems of arbitrary size [2].

V. SECOND LAW

The second law of thermodynamics governs the in-
crease of entropy under rather general conditions. Un-
fortunately, this law is sometimes stated in ambiguous
form, and several authors appear to prefer di↵erent non-
equivalent versions. Fortunately, in the case of isolated
systems, it is relatively straightforward to identify a
meaningful minimal version of the second law – originally
proposed by Planck – that imposes a testable constraint
on the microcanonical entropy candidates. However, be-
fore focussing on Planck’s formulation, let us briefly ad-
dress two other rather popular versions that are not ap-
propriate when dealing with isolated systems.

The perhaps simplest form of the second law states
that the entropy of an isolated system never decreases.
For isolated systems described by the MCE, this state-
ment is meaningless for the entropy of an isolated equi-
librium system at fixed energy is constant, regardless of
the chosen entropy definition.

Another naive version of the second law, based on an
oversimplification of Clausius’ original statement [? ], as-
serts that heat never flows spontaneously from a colder to
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More generally, for any parameter Aµ ⇤ {V, Ai} of the Hamiltonian H , one must have
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where T ⇥ (�S/�E)�1. These consistency conditions not only ensure that the thermodynamic
potential S fulfills the fundamental differential relation (9). For a given density operator ⌃, they
can also be used to separate consistent entropy definitions from inconsistent ones.

Demanding additivity of entropy S for non-interacting systems and using only the mathe-
matical properties of the MC density operator (1), one finds [22] from the condition (11) that
the MC entropy S must equal the Gibbs entropy SG, since
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This proves that only the pair (⌃, SG) constitutes a consistent thermostatistical model in the case
of the MC density operator ⌃. As a corollary, the Boltzmann entropy SB is not a thermodynamic
entropy, implying that it is inconsistent to insert the Boltzmann ‘temperature’ TB into equation-
of-states or efficiency formulas that assume validity of the thermodynamic relations (9).

Similarly to Eq. (12), it is straightforward to show that, for standard classical Hamiltonian
systems, only the Gibbs temperature TG satisfies the mathematically rigorous equipartition the-
orem [10] ⇧
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for all canonical coordinates ⌅ = (⌅1, . . .). The direct proof of Eq. (13) requires mild as-
sumptions such as confined trajectories and a finite groundstate energy. The key steps are
identical to those in (12), i.e., one merely exploits the chain rule relation �⇥(E � H)/�⇤ =
�(�H/�⇤)⇥(E � H), which holds for any variable ⇤ in the Hamiltonian H . Equation (13) is
essentially a phase-space version of Stokes’ theorem [10], relating a surface (flux) integral on
the energy shell to the enclosed phase space volume.

Small systems
Differences between SB and SG are negligible for most macroscopic systems with monotonic
DoS ⌥, but can be significant for small systems [10]. This can already be seen for a classical
ideal gas in d-space dimensions, where [15]

⇤(E, V ) = �EdN/2V N , � =
(2⇧m)dN/2

N !hd�(dN/2 + 1)
, (14)
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FIG. 1. A pendulum moves in phase space (0, p) along lines of constant energy, H(O,p) = E. Blue: finite tra jectories 
(oscillations) for E < 2. Green: infinite trajectories (rotation) for E > 2. Red: the critical contour, E = 2, separating finite 
and infinite trajectories. 
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Figure 1. Microcanonical thermostatistics of the pendulum with Hamiltonian {2.10). {a) The integrated OoS Q {blue) grows 
monotonically while the DoS w (red dashed) exhibits a singular peak at the critical energy Ec = mgL, ind icating a change 
in the phase-space topology. (b) The Gibbs entropy 5G (blue) increases monotonically, whereas the Boltzmann entropy 58 (red 
dashed) becomes singular at fc and decays forE > f c. {c) The Gibbs temperature Tc, (blue) approaches asymptotically the caloric 
equation of state of t he ideal one-particle gas, whereas the Boltzmann temperature T6 (red dashed) becomes negative for 

E > f c. 
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PERSPECTIVES

        U
ltracold quantum gases present an 
exquisitely tunable quantum sys-
tem. Applications include preci-

sion measurement ( 1), quantum simulations 
for advanced materials design ( 2), and new 
regimes of chemistry ( 3). Typically trapped 
in a combination of magnetic fi elds and laser 
beams, strongly isolated from the environ-
ment in an ultrahigh vacuum, and cooled to 
temperatures less than a microdegree above 
absolute zero, they are the coldest known 
material in the universe. The interactions 
between atoms in the gas can be tuned over 
seven orders of magnitude and from repul-
sive to attractive ( 4). The addition of stand-
ing waves made from interfering lasers at 
optical wavelengths gives rise to an optical 
lattice, a crystal of light, periodic just like 
the usual crystals made of matter. On page 
52 of this issue, Braun et al. ( 5) use these 
special features of ultracold quantum gases 
to produce a thermodynamic oddity—nega-
tive temperature.

Temperature is casually associated with 
hot and cold. How can something be “colder” 
than absolute zero? The answer lies in a more 
precise notion of temperature. Temperature is 
a single-parameter curve fi t to a probability 
distribution. Given a large number of parti-
cles, we can say each of them has a probabil-
ity to have some energy, P(E). Most will be in 
low-energy states and a few in higher-energy 
states. This probability distribution can be fi t 
very well with an exponential falling away to 
zero. Of course, the actual distribution may 
be very noisy, but an exponential fi t is still 
a good approximation (see the fi gure, panel 
A). Negative temperature means most parti-
cles are in a high-energy state, with a few in a 
low-energy state, so that the exponential rises 
instead of falls (see the fi gure, panel E).

To create negative temperature, Braun et 

al. had to produce an upper bound in energy, 
so particles could pile up in high-energy rather 
than low-energy states. In their experiment, 
there are three important kinds of energy: 
kinetic energy, or the energy of motion in the 
optical lattice; potential energy, due to mag-
netic fi elds trapping the gas; and interaction 
energy, due to interactions between the atoms 
in their gas. The lattice naturally gives an 

upper bound to kinetic energy via the forma-
tion of a band gap, a sort of energetic barrier 
to higher-energy states. The potential energy 
was made negative by the clever use of an 
anti-trap on top of the lattice, taking the shape 
of an upside-down parabola. Finally, the 
interactions were tuned to be attractive (neg-
ative). Thus, all three energies had an upper 
bound and, in principle, the atoms could pile 
up in high-energy states.

Braun et al. convinced their gas to undergo 
such a strange inversion using a quantum 
phase transition ( 6), an extension of the well-
known thermodynamic concept of phase tran-
sitions to a regime in which the temperature 
is so low that it plays no role in the change 
of phase. In this case, they worked with two 
phases, superfl uid and Mott insulator. In a 
superfl uid, the gas fl ows freely without vis-
cosity and is coherent, like a laser, but made 
of matter instead of light. In a Mott insula-
tor, the atoms freeze into a regular pattern and 
become incompressible, similar to a solid. 

Braun et al. fi rst make their atoms repulsive 
in a superfl uid phase. They tune them to a 
Mott insulating phase by simply turning up 
the intensity of the optical lattice lasers, mak-
ing the lattice deeper. Then they tune the inte-
reactions to be attractive and at the same time 
turn their trap upside down to be an anti-trap. 
Finally, they melt the Mott insulator to obtain 
an attractive superfl uid. These anti-traps have 
been used before, to create a self-propagat-
ing pulse of atoms that does not disperse (a 
bright soliton) from attractive gases in one 
dimension ( 7,  8). However, attractive quan-
tum gases in two and three dimensions can 
implode, rather spectacularly ( 9). This ten-
dency to implode is called negative pressure. 
The negative temperature is precisely what 
stabilizes the gas against negative pressure 
and implosion; the Mott insulator serves as 
a bridge state between positive temperature 
and pressure, and negative temperature and 
pressure (see the fi gure, panels B to D).

Braun et al.’s exploration of negative 
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PERSPECTIVES
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and pressure, and negative temperature and 
pressure (see the fi gure, panels B to D).

Braun et al.’s exploration of negative 
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A cloud of potassium atoms is tuned 

to negative temperatures via a quantum 

phase transition.
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Less than zero. (A) Temperature is a one-parameter fi t: As the energy gets large, the probability that an atom 
will have that energy falls away exponentially. A quantum phase transition from a repulsive superfl uid (B) to 
a Mott insulator (C) provides a bridge to an attractive superfl uid (D), resulting in negative pressure balanced 
by negative temperature (E).
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Negative Absolute Temperature for
Motional Degrees of Freedom
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Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probability Pi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a
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PERSPECTIVES

        U
ltracold quantum gases present an 
exquisitely tunable quantum sys-
tem. Applications include preci-

sion measurement ( 1), quantum simulations 
for advanced materials design ( 2), and new 
regimes of chemistry ( 3). Typically trapped 
in a combination of magnetic fi elds and laser 
beams, strongly isolated from the environ-
ment in an ultrahigh vacuum, and cooled to 
temperatures less than a microdegree above 
absolute zero, they are the coldest known 
material in the universe. The interactions 
between atoms in the gas can be tuned over 
seven orders of magnitude and from repul-
sive to attractive ( 4). The addition of stand-
ing waves made from interfering lasers at 
optical wavelengths gives rise to an optical 
lattice, a crystal of light, periodic just like 
the usual crystals made of matter. On page 
52 of this issue, Braun et al. ( 5) use these 
special features of ultracold quantum gases 
to produce a thermodynamic oddity—nega-
tive temperature.

Temperature is casually associated with 
hot and cold. How can something be “colder” 
than absolute zero? The answer lies in a more 
precise notion of temperature. Temperature is 
a single-parameter curve fi t to a probability 
distribution. Given a large number of parti-
cles, we can say each of them has a probabil-
ity to have some energy, P(E). Most will be in 
low-energy states and a few in higher-energy 
states. This probability distribution can be fi t 
very well with an exponential falling away to 
zero. Of course, the actual distribution may 
be very noisy, but an exponential fi t is still 
a good approximation (see the fi gure, panel 
A). Negative temperature means most parti-
cles are in a high-energy state, with a few in a 
low-energy state, so that the exponential rises 
instead of falls (see the fi gure, panel E).

To create negative temperature, Braun et 

al. had to produce an upper bound in energy, 
so particles could pile up in high-energy rather 
than low-energy states. In their experiment, 
there are three important kinds of energy: 
kinetic energy, or the energy of motion in the 
optical lattice; potential energy, due to mag-
netic fi elds trapping the gas; and interaction 
energy, due to interactions between the atoms 
in their gas. The lattice naturally gives an 

upper bound to kinetic energy via the forma-
tion of a band gap, a sort of energetic barrier 
to higher-energy states. The potential energy 
was made negative by the clever use of an 
anti-trap on top of the lattice, taking the shape 
of an upside-down parabola. Finally, the 
interactions were tuned to be attractive (neg-
ative). Thus, all three energies had an upper 
bound and, in principle, the atoms could pile 
up in high-energy states.

Braun et al. convinced their gas to undergo 
such a strange inversion using a quantum 
phase transition ( 6), an extension of the well-
known thermodynamic concept of phase tran-
sitions to a regime in which the temperature 
is so low that it plays no role in the change 
of phase. In this case, they worked with two 
phases, superfl uid and Mott insulator. In a 
superfl uid, the gas fl ows freely without vis-
cosity and is coherent, like a laser, but made 
of matter instead of light. In a Mott insula-
tor, the atoms freeze into a regular pattern and 
become incompressible, similar to a solid. 

Braun et al. fi rst make their atoms repulsive 
in a superfl uid phase. They tune them to a 
Mott insulating phase by simply turning up 
the intensity of the optical lattice lasers, mak-
ing the lattice deeper. Then they tune the inte-
reactions to be attractive and at the same time 
turn their trap upside down to be an anti-trap. 
Finally, they melt the Mott insulator to obtain 
an attractive superfl uid. These anti-traps have 
been used before, to create a self-propagat-
ing pulse of atoms that does not disperse (a 
bright soliton) from attractive gases in one 
dimension ( 7,  8). However, attractive quan-
tum gases in two and three dimensions can 
implode, rather spectacularly ( 9). This ten-
dency to implode is called negative pressure. 
The negative temperature is precisely what 
stabilizes the gas against negative pressure 
and implosion; the Mott insulator serves as 
a bridge state between positive temperature 
and pressure, and negative temperature and 
pressure (see the fi gure, panels B to D).

Braun et al.’s exploration of negative 
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A cloud of potassium atoms is tuned 

to negative temperatures via a quantum 

phase transition.
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Less than zero. (A) Temperature is a one-parameter fi t: As the energy gets large, the probability that an atom 
will have that energy falls away exponentially. A quantum phase transition from a repulsive superfl uid (B) to 
a Mott insulator (C) provides a bridge to an attractive superfl uid (D), resulting in negative pressure balanced 
by negative temperature (E).
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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2

I. Bloch,1,2 U. Schneider1,2*

Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probabilityPi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a
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sufficiently deep optical lattice are described by
the Bose-Hubbard Hamiltonian (12)

H ¼ −J ∑
〈i;j〉

b%
†
i b
%
j þ

U
2
∑
i
n%iðn%i − 1Þ þ V∑

i
r2i n% i ð2Þ

Here, J is the tunneling matrix element be-
tween neighboring lattice sites 〈i, j〉, and b%i and
b%
†
i are the annihilation and creation operator,
respectively, for a boson on site i,U is the on-site
interaction energy, n% i ¼ b%

†
i b
%
i is the local number

operator, and V º w2 describes the external har-
monic confinement, with ri denoting the posi-

tion of site i with respect to the trap center andw
the trap frequency.

In Fig. 1B, we show how lower and upper
bounds can be realized for the three terms in the
Hubbard Hamiltonian. The restriction to a single
band naturally provides lower and upper bounds
for the kinetic energy Ekin, but the interaction
term Eint presents a challenge: Because in prin-
ciple all bosons could occupy the same lattice
site, the interaction energy can diverge in the
thermodynamic limit. For repulsive interactions
(U > 0), the interaction energy is only bounded

from below but not from above, thereby limiting
the system to positive temperatures; in contrast,
for attractive interactions (U < 0), only an upper
bound for the interaction energy is established,
rendering positive temperature ensembles unsta-
ble. The situation is different for the Fermi-Hubbard
model, where the Pauli principle enforces an up-
per limit on the interaction energy per atom of
U/2 and thereby allows negative temperatures
even in the repulsive case (13, 14). Similarly, a
trapping potential V > 0 only provides a lower
bound for the potential energy Epot, whereas an

Fig. 1. Negative absolute temperature in optical lattices. (A) Sketch of entropy
as a function of energy in a canonical ensemble possessing both lower (Emin) and
upper (Emax) energy bounds. (Insets) Sample occupation distributions of single-
particle states for positive, infinite, and negative temperature, assuming a weakly
interacting ensemble. (B) Energy bounds of the three terms of the 2D Bose-
Hubbard Hamiltonian: kinetic (Ekin), interaction (Eint), and potential (Epot) energy.
(C) Measured momentum distributions (TOF images) for positive (left) and neg-
ative (right) temperature states. Both images are averages of about 20 shots;
both optical densities (OD) are individually scaled. The contour plots below show
the tight-binding dispersion relation; momenta with large occupation are high-
lighted. The white square in the center indicates the first Brillouin zone.

Fig. 2. Experimental sequence and TOF images. (A) Top to bottom: lattice
depth, horizontal trap frequency, and scattering length as a function of
time. Blue indicates the sequence for positive, red for negative temper-
ature of the final state. (B) TOF images of the atomic cloud at various times
t in the sequence. Blue borders indicate positive, red negative temper-

atures. The initial picture in a shallow lattice at t = 6.8 ms is taken once for
a scattering length of a = 309(5) a0 (top) as in the sequence, and once for
a = 33(1) a0 (bottom; OD rescaled by a factor of 0.25), comparable to the
final images. All images are averages of about 20 individual shots. See
also Fig. 1C.
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Negative Absolute Temperature for
Motional Degrees of Freedom
S. Braun,1,2 J. P. Ronzheimer,1,2 M. Schreiber,1,2 S. S. Hodgman,1,2 T. Rom,1,2

I. Bloch,1,2 U. Schneider1,2*

Absolute temperature is usually bound to be positive. Under special conditions, however,
negative temperatures—in which high-energy states are more occupied than low-energy
states—are also possible. Such states have been demonstrated in localized systems with finite,
discrete spectra. Here, we prepared a negative temperature state for motional degrees of
freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting
ensemble of ultracold bosons at negative temperature that is stable against collapse for
arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper
band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites.
Negative temperatures imply negative pressures and open up new parameter regimes for
cold atoms, enabling fundamentally new many-body states.

Absolute temperature T is one of the cen-
tral concepts of statistical mechanics and
is a measure of, for example, the amount

of disordered motion in a classical ideal gas. There-
fore, nothing can be colder than T = 0, where
classical particles would be at rest. In a thermal
state of such an ideal gas, the probabilityPi for a
particle to occupy a state i with kinetic energy Ei
is proportional to the Boltzmann factor

Pi º e−Ei=kBT ð1Þ

where kB is Boltzmann’s constant. An ensemble
at positive temperature is described by an occu-
pation distribution that decreases exponentially

with energy. If we were to extend this formula to
negative absolute temperatures, exponentially in-
creasing distributions would result. Because the
distribution needs to be normalizable, at positive
temperatures a lower bound in energy is re-
quired, as the probabilities Pi would diverge for
Ei → –∞. Negative temperatures, on the other
hand, demand an upper bound in energy (1, 2). In
daily life, negative temperatures are absent, be-
cause kinetic energy in most systems, including
particles in free space, only provides a lower en-
ergy bound. Even in lattice systems, where kinet-
ic energy is split into distinct bands, implementing
an upper energy bound for motional degrees of
freedom is challenging, because potential and in-
teraction energy need to be limited as well (3, 4).
So far, negative temperatures have been realized
in localized spin systems (5–7), where the finite,
discrete spectrum naturally provides both lower
and upper energy bounds. Here, we were able to
realize a negative temperature state for motional
degrees of freedom.

In Fig. 1A, we schematically show the rela-
tion between entropy S and energy E for a ther-
mal system possessing both lower and upper
energy bounds. Starting atminimumenergy,where
only the ground state is populated, an increase in
energy leads to an occupation of a larger number
of states and therefore an increase in entropy. As
the temperature approaches infinity, all states be-
come equally populated and the entropy reaches
its maximum possible value Smax. However,
the energy can be increased even further if high-
energy states are more populated than low-energy
ones. In this regime, the entropy decreases with
energy, which, according to the thermodynamic
definition of temperature (8) (1/T = ∂S/∂E), re-
sults in negative temperatures. The temperature is
discontinuous at maximum entropy, jumping from
positive to negative infinity. This is a consequence
of the historic definition of temperature. A con-
tinuous and monotonically increasing tempera-
ture scale would be given by −b = −1/kBT, also
emphasizing that negative temperature states are
hotter than positive temperature states, i.e., in
thermal contact, heat would flow from a negative
to a positive temperature system.

Because negative temperature systems can ab-
sorb entropy while releasing energy, they give
rise to several counterintuitive effects, such as
Carnot engines with an efficiency greater than
unity (4). Through a stability analysis for thermo-
dynamic equilibrium, we showed that negative
temperature states of motional degrees of free-
dom necessarily possess negative pressure (9) and
are thus of fundamental interest to the description
of dark energy in cosmology, where negative pres-
sure is required to account for the accelerating
expansion of the universe (10).

Cold atoms in optical lattices are an ideal
system to create negative temperature states be-
cause of the isolation from the environment and
independent control of all relevant parameters
(11). Bosonic atoms in the lowest band of a

1Fakultät für Physik, Ludwig-Maximilians-Universität München,
Schellingstraße 4, 80799Munich, Germany.2Max-Planck-Institut
für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching,
Germany.
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1.4 Measuring TB vs. TG

To conclude this section, let us still clarify why the method employed, for example, by Braun et
al. [6] measures TB and not the thermodynamic temperature T = TG. We restrict ourselves to
sketching the main idea as the technical details of the derivation can be found in most modern
textbooks on statistical mechanics [15, 16].

We recall that Braun et al. [6] estimate an effective ‘temperature’ by fitting an exponential
Bose-Einstein function to their experimentally obtained one-particle distributions. Let us as-
sume their system contains N ⌅ 1 particles and denote the corresponding Hamiltonian by HN

and the DoS by ⇤N . Then, the formally exact MC one-particle density operator is given by

⇥1 = TrN�1[⇥N ] =
TrN�1[�(E �HN)]

⇤N
. (25)

To obtain an exponential (canonical) fitting formula, as used in the experiments, one first has to
rewrite ⇥1 in the equivalent form

⇥1 = exp[ln ⇥1]. (26)

Then, applying a standard steepest descent approximation [15, 16] to the logarithm and assum-
ing discrete one-particle levels E�, one finds for the relative occupancy p� of one-particle level
E� the canonical form16

p� ⇧
e�E�/(kBTB)

Z
, Z =

�

�

e�E�/(kBTB). (27)

The key observation here is that this exponential approximation features TB and not the absolute
thermodynamic Gibbs temperature T = TG. Hence, by fitting the one-particle distribution,
Braun et al. [6] determined the Boltzmann temperature TB, which can be negative, whereas the
thermodynamic Gibbs temperature T = TG is always non-negative. From the above definitions,
it is straightforward to show that, generally,

TB =
TG

1� kB/C
, (28)

where C = (⌅TG/⌅E)�1 is the heat capacity. Evidently, differences between TG and TB

become relevant only if |C| is close to or smaller than kB; in particular, TB is negative if
0 < C < kB. From a practical perspective, Eq. (28) is useful as it allows to reconstruct the
non-negative absolute temperature T = TG from measurements of TB and C, but TG can, of
course, also be directly measured.

16This becomes obvious by writing (25) for a given one-particle energy E� as p� = �N�1(E � E�)/�N (E) =
exp[ln�N�1(E � E�)]/�N (E) and expanding for E� ⇤ E, which gives p� ⌃ exp[�E�/(kBTB,N�1)] where
kBTB,N�1 ⇥ �N�1(E)/�⇥

N�1(E) in agreement with Eq. (7). That is, TB in (27) is actually the Boltzmann
temperature of the (N � 1)-particle system.
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PERSPECTIVES

        U
ltracold quantum gases present an 
exquisitely tunable quantum sys-
tem. Applications include preci-

sion measurement ( 1), quantum simulations 
for advanced materials design ( 2), and new 
regimes of chemistry ( 3). Typically trapped 
in a combination of magnetic fi elds and laser 
beams, strongly isolated from the environ-
ment in an ultrahigh vacuum, and cooled to 
temperatures less than a microdegree above 
absolute zero, they are the coldest known 
material in the universe. The interactions 
between atoms in the gas can be tuned over 
seven orders of magnitude and from repul-
sive to attractive ( 4). The addition of stand-
ing waves made from interfering lasers at 
optical wavelengths gives rise to an optical 
lattice, a crystal of light, periodic just like 
the usual crystals made of matter. On page 
52 of this issue, Braun et al. ( 5) use these 
special features of ultracold quantum gases 
to produce a thermodynamic oddity—nega-
tive temperature.

Temperature is casually associated with 
hot and cold. How can something be “colder” 
than absolute zero? The answer lies in a more 
precise notion of temperature. Temperature is 
a single-parameter curve fi t to a probability 
distribution. Given a large number of parti-
cles, we can say each of them has a probabil-
ity to have some energy, P(E). Most will be in 
low-energy states and a few in higher-energy 
states. This probability distribution can be fi t 
very well with an exponential falling away to 
zero. Of course, the actual distribution may 
be very noisy, but an exponential fi t is still 
a good approximation (see the fi gure, panel 
A). Negative temperature means most parti-
cles are in a high-energy state, with a few in a 
low-energy state, so that the exponential rises 
instead of falls (see the fi gure, panel E).

To create negative temperature, Braun et 

al. had to produce an upper bound in energy, 
so particles could pile up in high-energy rather 
than low-energy states. In their experiment, 
there are three important kinds of energy: 
kinetic energy, or the energy of motion in the 
optical lattice; potential energy, due to mag-
netic fi elds trapping the gas; and interaction 
energy, due to interactions between the atoms 
in their gas. The lattice naturally gives an 

upper bound to kinetic energy via the forma-
tion of a band gap, a sort of energetic barrier 
to higher-energy states. The potential energy 
was made negative by the clever use of an 
anti-trap on top of the lattice, taking the shape 
of an upside-down parabola. Finally, the 
interactions were tuned to be attractive (neg-
ative). Thus, all three energies had an upper 
bound and, in principle, the atoms could pile 
up in high-energy states.

Braun et al. convinced their gas to undergo 
such a strange inversion using a quantum 
phase transition ( 6), an extension of the well-
known thermodynamic concept of phase tran-
sitions to a regime in which the temperature 
is so low that it plays no role in the change 
of phase. In this case, they worked with two 
phases, superfl uid and Mott insulator. In a 
superfl uid, the gas fl ows freely without vis-
cosity and is coherent, like a laser, but made 
of matter instead of light. In a Mott insula-
tor, the atoms freeze into a regular pattern and 
become incompressible, similar to a solid. 

Braun et al. fi rst make their atoms repulsive 
in a superfl uid phase. They tune them to a 
Mott insulating phase by simply turning up 
the intensity of the optical lattice lasers, mak-
ing the lattice deeper. Then they tune the inte-
reactions to be attractive and at the same time 
turn their trap upside down to be an anti-trap. 
Finally, they melt the Mott insulator to obtain 
an attractive superfl uid. These anti-traps have 
been used before, to create a self-propagat-
ing pulse of atoms that does not disperse (a 
bright soliton) from attractive gases in one 
dimension ( 7,  8). However, attractive quan-
tum gases in two and three dimensions can 
implode, rather spectacularly ( 9). This ten-
dency to implode is called negative pressure. 
The negative temperature is precisely what 
stabilizes the gas against negative pressure 
and implosion; the Mott insulator serves as 
a bridge state between positive temperature 
and pressure, and negative temperature and 
pressure (see the fi gure, panels B to D).

Braun et al.’s exploration of negative 
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to negative temperatures via a quantum 

phase transition.
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To conclude this section, let us still clarify why the method employed, for example, by Braun et
al. [6] measures TB and not the thermodynamic temperature T = TG. We restrict ourselves to
sketching the main idea as the technical details of the derivation can be found in most modern
textbooks on statistical mechanics [15, 16].

We recall that Braun et al. [6] estimate an effective ‘temperature’ by fitting an exponential
Bose-Einstein function to their experimentally obtained one-particle distributions. Let us as-
sume their system contains N ⌅ 1 particles and denote the corresponding Hamiltonian by HN

and the DoS by ⇤N . Then, the formally exact MC one-particle density operator is given by

⇥1 = TrN�1[⇥N ] =
TrN�1[�(E �HN)]

⇤N
. (25)

To obtain an exponential (canonical) fitting formula, as used in the experiments, one first has to
rewrite ⇥1 in the equivalent form

⇥1 = exp[ln ⇥1]. (26)

Then, applying a standard steepest descent approximation [15, 16] to the logarithm and assum-
ing discrete one-particle levels E�, one finds for the relative occupancy p� of one-particle level
E� the canonical form16

p� ⇧
e�E�/(kBTB)

Z
, Z =

�

�

e�E�/(kBTB). (27)

The key observation here is that this exponential approximation features TB and not the absolute
thermodynamic Gibbs temperature T = TG. Hence, by fitting the one-particle distribution,
Braun et al. [6] determined the Boltzmann temperature TB, which can be negative, whereas the
thermodynamic Gibbs temperature T = TG is always non-negative. From the above definitions,
it is straightforward to show that, generally,

TB =
TG

1� kB/C
, (28)

where C = (⌅TG/⌅E)�1 is the heat capacity. Evidently, differences between TG and TB

become relevant only if |C| is close to or smaller than kB; in particular, TB is negative if
0 < C < kB. From a practical perspective, Eq. (28) is useful as it allows to reconstruct the
non-negative absolute temperature T = TG from measurements of TB and C, but TG can, of
course, also be directly measured.

16This becomes obvious by writing (25) for a given one-particle energy E� as p� = �N�1(E � E�)/�N (E) =
exp[ln�N�1(E � E�)]/�N (E) and expanding for E� ⇤ E, which gives p� ⌃ exp[�E�/(kBTB,N�1)] where
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N�1(E) in agreement with Eq. (7). That is, TB in (27) is actually the Boltzmann
temperature of the (N � 1)-particle system.
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⇥1 = exp[ln ⇥1]. (26)

Then, applying a standard steepest descent approximation [15, 16] to the logarithm and assum-
ing discrete one-particle levels E�, one finds for the relative occupancy p� of one-particle level
E� the canonical form16

p� ⇧
e�E�/(kBTB)

Z
, Z =

�

�

e�E�/(kBTB). (27)

The key observation here is that this exponential approximation features TB and not the absolute
thermodynamic Gibbs temperature T = TG. Hence, by fitting the one-particle distribution,
Braun et al. [6] determined the Boltzmann temperature TB, which can be negative, whereas the
thermodynamic Gibbs temperature T = TG is always non-negative. From the above definitions,
it is straightforward to show that, generally,

TB =
TG

1� kB/C
, (28)

where C = (⌅TG/⌅E)�1 is the heat capacity. Evidently, differences between TG and TB

become relevant only if |C| is close to or smaller than kB; in particular, TB is negative if
0 < C < kB. From a practical perspective, Eq. (28) is useful as it allows to reconstruct the
non-negative absolute temperature T = TG from measurements of TB and C, but TG can, of
course, also be directly measured.

16This becomes obvious by writing (25) for a given one-particle energy E� as p� = �N�1(E � E�)/�N (E) =
exp[ln�N�1(E � E�)]/�N (E) and expanding for E� ⇤ E, which gives p� ⌃ exp[�E�/(kBTB,N�1)] where
kBTB,N�1 ⇥ �N�1(E)/�⇥

N�1(E) in agreement with Eq. (7). That is, TB in (27) is actually the Boltzmann
temperature of the (N � 1)-particle system.

9
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Consistent thermostatistics forbids negative
absolute temperatures
Jörn Dunkel1* and Stefan Hilbert2

Over the past 60 years, a considerable number of theories and experiments have claimed the existence of negative absolute
temperature in spin systems and ultracold quantum gases. This has led to speculation that ultracold gases may be dark-energy
analogues and also suggests the feasibility of heat engines with efficiencies larger than one. Here, we prove that all
previous negative temperature claims and their implications are invalid as they arise from the use of an entropy definition
that is inconsistent both mathematically and thermodynamically. We show that the underlying conceptual deficiencies can
be overcome if one adopts a microcanonical entropy functional originally derived by Gibbs. The resulting thermodynamic
framework is self-consistent and implies that absolute temperature remains positive even for systems with a bounded
spectrum. In addition, we propose a minimal quantum thermometer that can be implemented with available experimental
techniques.

Positivity of absolute temperature T , a key postulate of
thermodynamics1, has repeatedly been challenged both
theoretically2–4 and experimentally5–7. If indeed realizable,

negative temperature systems promise profound practical and
conceptual consequences. They might not only facilitate the
creation of hyper-efficient heat engines2–4 but could also help7 to
resolve the cosmological dark-energy puzzle8,9. Measurements of
negative absolute temperature were first reported in 1951 by Purcell
and Pound5 in seminal work on the population inversion in nuclear
spin systems. Five years later, Ramsay’s comprehensive theoretical
study2 clarified hypothetical ramifications of negative temperature
states, most notably the possibility to achieve Carnot efficiencies
η > 1 (refs 3,4). Recently, the first experimental realization of an
ultracold bosonic quantum gas7 with a bounded spectrum has
attracted considerable attention10 as another apparent example
system with T < 0, encouraging speculation that cold-atom gases
could serve as laboratory dark-energy analogues.

Here, we show that claims of negative absolute temperature
in spin systems and quantum gases are generally invalid, as they
arise from the use of a popular yet inconsistent microcanonical
entropy definition attributed to Boltzmann11. By means of rigorous
derivations12 and exactly solvable examples, we will demonstrate
that the Boltzmann entropy, despite being advocated in most
modern textbooks13, is incompatible with the differential structure
of thermostatistics, fails to give sensible predictions for analytically
tractable quantum and classical systems, and violates equipartition
in the classical limit. The general mathematical incompatibility
implies that it is logically inconsistent to insert negative Boltz-
mann ‘temperatures’ into standard thermodynamic relations, thus
explaining paradoxical (wrong) results for Carnot efficiencies and
other observables. The deficiencies of the Boltzmann entropy can
be overcome by adopting a self-consistent entropy concept that
was derived by Gibbs more than 100 years ago14, but has been
mostly forgotten ever since. Unlike the Boltzmann entropy, Gibbs’
entropy fulfils the fundamental thermostatistical relations and
produces sensible predictions for heat capacities and other ther-
modynamic observables in all exactly computable test cases. The

1Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue E17-412, Cambridge, Massachusetts 02139-4307, USA,
2Max Planck Institute for Astrophysics, Karl-Schwarzschild-Straße 1, Garching 85748, Germany. *e-mail: dunkel@math.mit.edu

Gibbs formalism yields strictly non-negative absolute temperatures
even for quantum systems with a bounded spectrum, thereby
invalidating all previous negative temperature claims.

Negative absolute temperatures?
The seemingly plausible standard argument in favour of negative
absolute temperatures goes as follows10: assume a suitably designed
many-particle quantum system with a bounded spectrum5,7 can
be driven to a stable state of population inversion, so that most
particles occupy high-energy one-particle levels. In this case, the
one-particle energy distributionwill be an increasing function of the
one-particle energy ε. To fit7,10 such a distributionwith a Boltzmann
factor ∝exp(−βε), β must be negative, implying a negative Boltz-
mann ‘temperature’ TB = (kBβ)−1 < 0. Although this reasoning
may indeed seem straightforward, the arguments below clarify that
TB is, in general, not the absolute thermodynamic temperature T ,
unless one is willing to abandon the mathematical consistency of
thermostatistics. We shall prove that the parameter TB = (kBβ)−1,
as determined by Purcell and Pound5 and more recently also in
ref. 7 is, in fact, a function of both temperature T and heat capacity
C . This function TB(T ,C) can indeed become negative, whereas the
actual thermodynamic temperatureT always remains positive.

Entropies of closed systems
When interpreting thermodynamic data of newmany-body states7,
one of the first questions to be addressed is the choice of the
appropriate thermostatistical ensemble15,16. Equivalence of the
microcanonical and other statistical ensembles cannot—in fact,
must not—be taken for granted for systems that are characterized
by a non-monotonic2,4,7 density of states (DOS) or that can undergo
phase-transitions due to attractive interactions17—gravity being a
prominent example18. Population-inverted systems are generally
thermodynamically unstable when coupled to a (non-population-
inverted) heat bath and, hence, must be prepared in isolation5–7.
In ultracold quantum gases7 that have been isolated from the
environment to suppress decoherence, both particle number
and energy are in good approximation conserved. Therefore,

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 1
© 2013 Macmillan Publishers Limited.  All rights reserved. 
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Weakly coupled systems

E interaction � Esystem

System ⊕ Environment in thermal
equilibrium at total energy Etot

pβ(x) = Z−1e−βHS (x)

Z =

∫
dΓSe

−βHS (x)

x ∈ ΓS : phase space of system

dΓs =
d3Nqd3Np

h3N
: volume element

β = k−1
B

∂Stot

∂Etot
: inverse temperature

Standard form of canonical equilibrium of a subsystem holds for
large systems with short-range interactions:

Einteraction ∝ V
2/3
S , Esystem ∝ VS
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NEXT: 
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Erunt multi qui, postquam mea scripta legerint, non ad 
contemplandum utrum vera sint quae dixerim, mentem
convertent, sed solum ad disquirendum quomodo, vel
iure vel iniuria, rationes meas labefactare possent.

G. Galilei, Opere (Ed. Naz., vol. I, p. 412)

There will be many who, when they will have read my 
paper, will apply their mind, not to examining whether 
what I have said is true, but only to seeking how, by 
hook or by crook, they could demolish my arguments.
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Eight physical systems of -lbermodynamics, statistical mechanics, 
and computer simulations 

By H. W. GRABEN and JOHN R. RAY 

Kinard Laboratory of Physics and Astronomy 
Clemson University, Clemson, South Carolina 29634-1911, USA 
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FS = −β−1 lnZ : free energy

US = − ∂

∂β
lnZ = 〈HS〉S : internal energy

SS = kB lnZS − kBβ
∂

∂β
lnZS = −kB〈ln pβ〉S : entropy

yielding

FS = US − TSS (1)

US =
∂

∂β
(βFS) (2)

SS = kBβ
2 ∂

∂β
FS (3)

Any pair of the three equations (1 – 3) implies the third one.
Potentials Fs , US and SS satisfying (1 –3) are
thermodynamically consistent.
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COMMENTS 

Comment on "Length Scale for the Constant 
Pressure Ensemble: Application to Small 
Systems and Relation to Einstein Fluctuation 
Theory" 

David S. Corti 

Department of Chemistry and Biochemist1y, University of 
California. Los Angeles. Los Angeles. California 90095 

Received: May 30. 1997 

In an article published in this journal early last year, Koper 
and Reiss1 introduced a volume scale that allows the partition 
function within the isothcnnal-isobaric ensemble (pressure. 
temperature, and particle number are held fixed) to be repre
sented by a dimensionless integral. The need to introduce a 
volume or length scale arises because the relevant partition 
function involves a sum over a set of unspecitied system 
volumes. Replacing the sum by an integral to include all 
volumes results in a partition function that is not dimensionless 
but has the dimensions of volume. In the thennodynamic limit. 
the sum over discrete unspecified volumes yields a completely 
negligible error,2 in essence because only the maximum tcnn 
in the sum was important. However. as emphasis has turned 
to the theory of small systems (e.g .. clusters3 and microemul
sions4). there is an obvious need to include all the tenns and 
obtain the correct partition function as an integral over volume. 

For a system composed of N particles, maintained at a 
temperature T, and subject to a constant external pressure p, 
Koper and Reiss showed that the partition function /j., if 
evaluated over a continuous set of system volumes, is 

~ = f v fi.Q(N,V,7)e-pVIkT dV (I) 

where 

tL-(~ 
kT- oV )N.T (2) 

provides the appropriate length scale of inverse volume such 
that /j. is dimensionless. Note that p" is the pressure of the 
system at volume V. (Koper and Reiss correctly state that the 
meaning of p" in eq 2 is not necessarily that of a pressure since 
for a small system there are usually additional independent 
thennodynamic variables (e.g., surface area, curvature, etc.) that 
need to be considered. However. it is convenient to refer top" 
as a pressure even though it denotes a specific volume derivative 
of Q.) In the above equations. Q(N.V.7) is the canonical 
ensemble partition function for a system containing N particles 
in a volume Vat the given temperature 7: while k is Boltzmann's 
constant. Equation I was derived by eliminating all redundant 
microstates that had the same volume. Koper and Reiss found 
that (eq 4.20 in their pa~r) 

G= - k T-kTln~ (3) 
••• 

J. Phys. Chem. 1996, 100. 422- 432 

thcnnodynamic limit. However, this result is inconsistent with 
their eq 4.9 in which 

(4) 

Q, is the total hypcrvolumc available to an isolated system 
composed of N, particles at a fixed volume V, and energy U,. 
The system is divided into two parts: the subsystem of interest 
(not necessarily macroscopic) and a bath of macroscopic size. 
The external bath imposes a constant temperature T and pressure 
p on the subsystem. The subsystem is described by U, V, and 
N while the bath is described by U0• V0 and N0• An overbar 
above a variable denotes the average (equilibrium) value. If 
we take the logarithm of both sides of cq 4, we find that 

_ S, _ [; eJ: S0 _ f-1 S0 
In Q, - k- In jj. + kT + kT + k - In 6 + kT + k (5) 

where we define5 

f-l= u+pv (6) 

Since the entropy is additive, we note that the total entropy of 
the isolated system must be equal to the sum of the individual 
entropies of the bath and subsystem (S, = S + So). Therefore, 
if we let 

G=U+pV- TS=H - TS (7) 

we find that5 

G = - kTln 6.(N,p,7) (8) 

Note that G is not equivalent to the Gibbs energy of the 
subsystem, as Koper and Reiss suggest in cq 3. but can be 
thought of as a modified Gibbs energy due to the appearance 
of p (and not the internal pressure) in cq 7. Koper and Reiss 
obtained cq 3 by ignoring the temperature dependence of p" in 
their eq 4. 13.6 Equation 8 is applicable to a system of any size 
and is consistent with previous fonnulations2 for systems in the 
thennodynamic limit. Koper and Reiss showed that p" = p 
for a macroscopic system (eq 6.5 in their paper) and, in this 
limit only. does G necessarily equal the Gibbs energy G of the 
subsystem. 

We can now dctcrn1inc what thermodynamic variables are 
related to the derivatives of G. For a system in which a constant 
external pressure p is imposed, we note that the differential 
change in the internal energy [; is equal to5 

- -
dU = TdS- pdV+ fl dN (9) 

where -p dV is the work performed by the system against the 
fixed extcmal pressure p and p is the chemical potential. Using 
cqs 7 and 9. one can show that 

= -s (LQ) -

Length Scale for the Constant Pressure Ensemble: Application to Small Systems and 
Relation to Einstein Fluctuation Theory 

Ger J. M. Koper and Howard Reiss• 
Department of Physical and Macromolecular Chemistry. Leiden University. Gorlaeus Laboratories. 
P.O. Box 9502. 2300 RA Leiden. The Netherlands 
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NOTES 

On the isothermal-isobaric ensemble partition function 
Kyu-Kwang Han 
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Taejon302-735. Korea 

Hyeon S. Son 
Bioinformatics Team, Korea Instil/lie of Science and Technology Information. Yusong. 
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(Received 5 July 200 I; accepted 9 August 200 I) 

We briefly review the isothermal-isobaric ensemble partit ion function correc tly derived by Corti and 
Soto-Campos [J. Chern. Phys. 108, 7959 (1998)] from the view point of usual simulations in which 
the external bath of a system is appropriately approximated. We show that. for the homogeneous 
system, the partition function can be reduced to the result of Attard (J. Chern. Phys. 103. 9884 
( 1995)] which was criticized by Corti and Soto-Campos. We conclude that the volume scale cannot 
be defined in general but in some particular cases and the recently controverted volume scales are 
those of the cases. We also confi rm the validity of Drown's [Mol. Phys. I. 68 ( 1958)] partition 
function which has never been used in simulations before. by demonstrating that it is equivalent to 
the one o f Corti and Soto-Campos. ~ 2001 Amer ican lnstifllte of Physics. 
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Abstract: Since most experimental observations are performed at constant temperature 

and pressure, the isothermal-isobaric (N PT ) ensemble has been widely used in molecular 

simulations. Nevertheless, the N PT ensemble has only recently been placed on a rigorous 

foundation. The proper formulation of the N PT ensemble requires a "shell" particle to 

uniquely identify the volume of the system, thereby avoiding the redundant counting of 

configurations. Here, we review our recent work in incorporating a shell particle into 

molecular dynamics simulation algorithms to generate the correct N PT ensemble averages. 

Unlike previous methods, a piston of unknown mass is no longer needed to control the 

response time of the volume fluctuations. As the volume of the system is attached to the 

shell particle, the system itself now sets the time scales for volume and pressure fluctuations. 

Finally, we discuss a number of tests that ensure the equations of motion sample phase space 

correctly and consider the response time of the system to pressure changes with and without 

the shell particle. Overall , the shell particle algorithm is an effective simulation method 

for studying systems exposed to a constant external pressure and may provide an advantage 

over other existing constant pressure approaches when developing nonequilibrium molecular 

dynamics methods. 

Keywords: isothermal-isobaric ensemble; molecular dynamics 
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Strongly coupled systems

microscopic system
macroscopic system
with long-range
interactions

solvated system,
e.g. pinch of salt in
a pot of water

Htot(x, y) = HS(x) +Hi (x, y) +HB(y) : total system’s Hamiltonian

x ∈ ΓS , ΓS phase space of system

y ∈ ΓB , ΓB phase space of environment



Strongly coupled systems

Htot(x, y) = HS(x) +Hi (x, y) +HB(y) : total system’s Hamiltonian

x ∈ ΓS , ΓS phase space of system

y ∈ ΓB , ΓB phase space of environment

Let the total system stay in a canonical equilibrium state at inverse
temperature β:

ρβ(x, y) = Z−1
tot e

−βHtot(x,y)

Ztot =

∫
dΓSdΓBe

−βHtot(x,y)

Then the system is in the state

pβ(x) =

∫
dΓBρβ(x, y)
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The reduced state pβ(x) in general differs from the Gibbs state
Z−1
S e−βH(x) of a weakly coupled system. To write pβ(x) in the

form of a Gibbs state one introduces the Hamiltonian of mean
force H∗(x) defined by

e−βH
∗(x) = 〈e−β(HS (x)+Hi (x,y))〉B

= Z−1
B

∫
dΓBe

−β(HS (x)+Hi (x,y)+HB(y))

ZB =

∫
dΓBe

−βHB(y)

H∗(x) = HS(x)− β−1 ln〈e−βHi (x,y)〉B
pβ(x) = Z−1

S e−βH
∗(x)

ZS =

∫
dΓSe

−βH∗(x) = Ztot/ZB
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Warning

W1 Note that Ĥ∗ (H∗(x)) determines p̂β (pβ(x)) but not vice
versa:

ln pβ = −βH∗ − lnZS

In other words, H∗S cannot be inferred from the intrinsic point of
view of the open system, say in terms of tomography of the open
system density matrix. Additional information from the
environment in the form of ZS = Ztot/ZB is required.
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Thermodynamics

FS = −β−1 lnZs = Ftot − FB

Us =
∂

∂β
βFS = Utot − UB

SS = kBβ
2 ∂

∂β
FS = Stot − SB

CS = −kBβ2
∂2

∂β2
βFS = Ctot − CB

The potentials FS , US and SS are thermodynamically consistent
because they follow from a partition function.

———————————————————————————–
R.P. Feynman, F.L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).
G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985).
P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008).

G.-L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 061105 (2009).
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Further warnings

W2 Internal energy

US = − ∂

∂β
lnZS = 〈 ∂

∂β
βH∗〉S = 〈H∗〉S + β〈∂H∗/∂β〉s

〈·〉S = Z−1S

∫
dΓS · e−βH

∗

The internal energy in general does not agree with the average of
the Hamiltonian of mean force. The temperature dependence of
H∗ entails an additional contribution.

W3 Entropy

SS = −kB〈ln pβ〉S + kBβ
2〈∂H∗/∂β〉S

The entropy in general deviates from the Shannon-Gibbs (von
Neumann) entropy due to the temperature dependence of the
Hamiltonian of mean force.
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Is the dynamics of open quantum systems always linear? 

Karen M. Fonseca Romero,* Peter Talkner, and Peter Hänggi 
Institut für Physik, Universität Augsburg, Universitätsstrasse 1, D 86315 Augsburg, Germany 

(Received 1 December 2003; published 17 May 2004) 
 

We study the influence of the preparation of an open quantum system on its reduced time evolution. In contrast to the 
frequently considered case of an initial preparation where the total density matrix factorizes into a product of a system density 
matrix and a bath density matrix the time evolution generally is no longer governed by a linear map nor is this map affine. 
Put differently, the evolution is truly nonlinear and cannot be cast into the form of a linear map plus a term that is independent 
of the initial density matrix of the open quantum system. As a consequence, the inhomogeneity that emerges in formally 
exact generalized master equations is in fact a nonlinear term that vanishes for a factorizing initial state. The general results 
are elucidated with the example of two interacting spins prepared at thermal equilibrium with one spin subjected to an external 
field. The second spin represents the environment. The field allows the preparation of mixed density matrices of the first spin 
that can be represented as a convex combination of two limiting pure states, i.e., the preparable reduced density matrices make 
up a convex set. Moreover, the map from these reduced density matrices onto the corresponding density matrices of the 
total system is affine only for vanishing coupling between the spins. In general, the set of the accessible total density matrices 
is nonconvex. 
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II. MICROCANONICAL DISTRIBUTIONS AND
ENTROPY DEFINITIONS

A. Setup

We consider strictly isolated classical or quantum sys-
tems described by a Hamiltonian H(⇠;Z) where ⇠ de-
notes the microscopic states and Z = (Z1, . . .) com-
prises external control parameters. It will be assumed
throughout that the microscopic dynamics conserves the
energy E, that the energy is bounded from below, E � 0,
and that an ensemble of such systems is described by the
microcanonical density operator

⇢(⇠|E,Z) =
�(E �H)

!
, (1)

where the non-negative normalization constant is given
by the DoS

!(E,Z) = Tr[�(E �H)] � 0 (2)

For classical systems, the trace is defined as a phase-space
integral and for quantum system by a sum or integral
over the basis vectors of the underlying Hilbert space.
The energy derivative of the DoS will be denoted by

⌫(E,Z) = @!/@E, (3)

and the integrated DoS is defined as

⌦(E,Z) = Tr[⇥(E �H)], (4)

so that ! = @⌦/@E (with ⇥ denoting the unit-step func-
tion). We shall assume throughout that ! is continuous
and piecewise di↵erentiable, so that its partial derivatives
are well-defined except for a countable number of singu-
lar points. The expectation value of an observable F (⇠)
with respect to the microcanonical density operator ⇢ is
defined by

hF iE,Z = Tr[F⇢]. (5)

As a special case, the probability density of some observ-
able F (⇠) is given by

%F (f |E,Z) = h�(f � F )iE,Z . (6)

To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
by averaging over microstates that are confined to the
energy shell E.

We adopt units such that the Boltzmann constant
kB = 1. For a given entropy function S(E,Z), the mi-
crocanonical temperature T and the heat capacity C are

obtained according to the rules of thermodynamics by
partial di↵erentiation,

T (E,Z) ⌘
✓
@S

@E

◆�1

, C(E,Z) =

✓
@T

@E

◆�1

. (7)

It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).

To simplify notation, when writing formulas that con-
tain !,⌦, T , etc., we will not explicitly state the func-
tional dependence on Z anymore, while keeping in mind
that the Hamiltonian can contain several additional con-
trol parameters.

B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.

1. Gibbs entropy

The Gibbs entropy is defined by [1, 2]

SG(E) = ln⌦. (8a)

The associated Gibbs temperature

TG(E) =
⌦

!
(8b)

is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,

TG =

⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (9)

We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)
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a hotter body. As evident from the simple yet generic ex-
ample in Sec. II C, the microcanonical temperature T (E)
can be a non-monotonic or even oscillating function of en-
ergy and, therefore, temperature di↵erences do not suf-
fice to specify the direction of heat flow when two initially
isolated systems are brought into thermal contact with
each other.
The deficiencies of the above formulations can be over-

come by resorting to Planck’s version of the second law.
Planck postulated that the sum of entropies of all bod-
ies taking part in some process never decreases. This
formulation is useful as it allows one to test the various
microcanonical entropy definitions. More precisely, if A
and B are two isolated systems with fixed energy values
EA and EB and fixed entropies SA(EA) and SB(EB),
then their entropy after coupling, SAB(EA + EB) must
be larger than the sum of their original entropies,

SAB(EA + EB) � SA(EA) + SB(EB). (38)

We next analyze whether the inequality (38) is fulfilled
by the microcanonical entropy candidates in Sec. II B

A. Gibbs entropy

To verify Eq. (38) for the Gibbs entropy SG = ln⌦, we
have to compare the phase volume of the compound sys-
tems after coupling, ⌦(EA+EB), with the phase volumes
⌦A(EA) and ⌦B(EB) of the subsystems before coupling.
Starting from Eq. (21d), we find

⌦(EA + EB)

=

Z EA+EB

0
dE0 ⌦A(E

0)!B(EA + EB � E0)

=

Z EA+EB

0
dE0

Z E0

0
dE00!A(E

00)!B(EA + EB � E0)

�
Z EA+EB

EA

dE0
Z EA

0
dE00!A(E

00)!B(EA + EB � E0)

=

Z EA

0
dE00!A(E

00)

Z EB

0
dE000!B(E

000)

= ⌦A(EA)⌦B(EB).
(39)

This result implies that the Gibbs entropy of the com-
pound system is always larger than the sum of the Gibbs
entropies of the subsystems before they were brought into
thermal contact:

SGAB(EA + EB) � SGA(EA) + SGB(EB). (40)

Thus, the Gibbs entropy satisfies Planck’s version of the
second law.

B. Boltzmann entropy

To verify Eq. (38) for the Boltzmann entropy SG =
ln(✏!), we have to compare the ✏-scaled DOS of the com-

pound systems after coupling, ✏!(EA + EB), with the
product of the ✏-scaled DOS ✏!A(EA) and ✏!B(EB) be-
fore the coupling. But, according to Eq. (21b), we have

✏!(EA+EB) = ✏

Z EA+EB

0
dE0!A(E

0)!B(EA+EB�E0),

(41)
which can be larger or smaller than ✏2!A(EA)!B(EB).
Thus, there is no strict relation between Boltzmann en-
tropy of the compound system and the Boltzmann en-
tropies of the subsystems before contact. That is, the
Boltzmann entropy violates the Planck version of the sec-
ond law for certain systems, as we will show in Sec. VIC
with an example.
One might try to ‘rescue’ the Boltzmann entropy from

failing the Planck’s second law by assuming that ✏ may
always be chosen ‘su�ciently’ (i.e., infinitesimally) small,
so that the entropy ordering is governed by the powers
of ✏. Perhaps, a more appealing solution is provided by
the modified definition (15a) of the Boltzmann entropy
that is based on the Shannon entropy. This Shannon
entropy does satisfy Planck’s version of the second law
(but fails the zeroth and first law).
[Comment (Stefan): I guess we should also

show explicitly that the Shannon version of the

Boltzmann entropy satisfies the Second Law]

VI. EXAMPLES

discuss only on the level of prototypical DOS. DOS
prototypes suggested for examples

• normal system: simple power-law DOS (like classi-
cal ideal gas)

• anormal system: upside-down parabola (i.e.
quadratic) DOS with lower and upper bound

• system with extra bump: any of the above, but
with additional large and sharp (delta-like) peak at
the energy of your choice (moving the peak around
influences the energy distribution between systems
in contatc without necessarily changing entropies
or temperatures of systems before contact)

• possible further examples could include simple clas-
sical systems with finite ⌦(1)

The DOS of the normal system:

!(E) =
⌦0

✏0

(
(E/✏0)

↵�1
, 0 < E

0 , otherwise.
(42)

The DOS of the anormal system:

!̂
�
E
�
=

6⌦1
E+

8
<

:

E (E+ � E)

E2
+

, 0 < E < E+

0 , otherwise.
(43)
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SGAB(EA + EB) � SGA(EA) + SGB(EB). (40)

Thus, the Gibbs entropy satisfies Planck’s version of the
second law.

B. Boltzmann entropy

To verify Eq. (38) for the Boltzmann entropy SG =
ln(✏!), we have to compare the ✏-scaled DOS of the com-

pound systems after coupling, ✏!(EA + EB), with the
product of the ✏-scaled DOS ✏!A(EA) and ✏!B(EB) be-
fore the coupling. But, according to Eq. (21b), we have

✏!(EA+EB) = ✏

Z EA+EB

0
dE0!A(E

0)!B(EA+EB�E0),

(41)
which can be larger or smaller than ✏2!A(EA)!B(EB).
Thus, there is no strict relation between Boltzmann en-
tropy of the compound system and the Boltzmann en-
tropies of the subsystems before contact. That is, the
Boltzmann entropy violates the Planck version of the sec-
ond law for certain systems, as we will show in Sec. VIC
with an example.
One might try to ‘rescue’ the Boltzmann entropy from

failing the Planck’s second law by assuming that ✏ may
always be chosen ‘su�ciently’ (i.e., infinitesimally) small,
so that the entropy ordering is governed by the powers
of ✏. Perhaps, a more appealing solution is provided by
the modified definition (15a) of the Boltzmann entropy
that is based on the Shannon entropy. This Shannon
entropy does satisfy Planck’s version of the second law
(but fails the zeroth and first law).
[Comment (Stefan): I guess we should also

show explicitly that the Shannon version of the

Boltzmann entropy satisfies the Second Law]

VI. EXAMPLES

discuss only on the level of prototypical DOS. DOS
prototypes suggested for examples

• normal system: simple power-law DOS (like classi-
cal ideal gas)

• anormal system: upside-down parabola (i.e.
quadratic) DOS with lower and upper bound

• system with extra bump: any of the above, but
with additional large and sharp (delta-like) peak at
the energy of your choice (moving the peak around
influences the energy distribution between systems
in contatc without necessarily changing entropies
or temperatures of systems before contact)

• possible further examples could include simple clas-
sical systems with finite ⌦(1)

The DOS of the normal system:

!(E) =
⌦0

✏0

(
(E/✏0)

↵�1
, 0 < E

0 , otherwise.
(42)

The DOS of the anormal system:

!̂
�
E
�
=

6⌦1
E+

8
<

:

E (E+ � E)

E2
+

, 0 < E < E+

0 , otherwise.
(43)
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II. MICROCANONICAL DISTRIBUTIONS AND
ENTROPY DEFINITIONS

A. Setup

We consider strictly isolated classical or quantum sys-
tems described by a Hamiltonian H(⇠;Z) where ⇠ de-
notes the microscopic states and Z = (Z1, . . .) com-
prises external control parameters. It will be assumed
throughout that the microscopic dynamics conserves the
energy E, that the energy is bounded from below, E � 0,
and that an ensemble of such systems is described by the
microcanonical density operator

⇢(⇠|E,Z) =
�(E �H)

!
, (1)

where the non-negative normalization constant is given
by the DoS

!(E,Z) = Tr[�(E �H)] � 0 (2)

For classical systems, the trace is defined as a phase-space
integral and for quantum system by a sum or integral
over the basis vectors of the underlying Hilbert space.
The energy derivative of the DoS will be denoted by

⌫(E,Z) = @!/@E, (3)

and the integrated DoS is defined as

⌦(E,Z) = Tr[⇥(E �H)], (4)

so that ! = @⌦/@E (with ⇥ denoting the unit-step func-
tion). We shall assume throughout that ! is continuous
and piecewise di↵erentiable, so that its partial derivatives
are well-defined except for a countable number of singu-
lar points. The expectation value of an observable F (⇠)
with respect to the microcanonical density operator ⇢ is
defined by

hF iE,Z = Tr[F⇢]. (5)

As a special case, the probability density of some observ-
able F (⇠) is given by

%F (f |E,Z) = h�(f � F )iE,Z . (6)

To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
by averaging over microstates that are confined to the
energy shell E.

We adopt units such that the Boltzmann constant
kB = 1. For a given entropy function S(E,Z), the mi-
crocanonical temperature T and the heat capacity C are

obtained according to the rules of thermodynamics by
partial di↵erentiation,

T (E,Z) ⌘
✓
@S

@E

◆�1

, C(E,Z) =

✓
@T

@E

◆�1

. (7)

It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).
To simplify notation, when writing formulas that con-

tain !,⌦, T , etc., we will not explicitly state the func-
tional dependence on Z anymore, while keeping in mind
that the Hamiltonian can contain several additional con-
trol parameters.

B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.

1. Gibbs entropy

The Gibbs entropy is defined by [1, 2]

SG(E) = ln⌦. (8a)

The associated Gibbs temperature

TG(E) =
⌦

!
(8b)

is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
straightforward to prove [3] that the Gibbs temperature
satisfies the equipartition theorem,

TG =

⌧
⇠i
@H

@⇠i

�

E

8 i = 1, . . . , D. (9)

We will return to this equation later as it relates directly
to the notion of thermal equilibrium.

2. Boltzmann entropy

The perhaps most popular microcanonical entropy def-
inition is the Boltzmann entropy

SB(E) = ln (✏ !) , (10a)

hänggi
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To avoid potential confusion, it may be worthwhile to
stress that, although we will compare di↵erent entropy
functions S(E,Z), all expectation value appearing below
will always be defined with respect to the standard mi-
crocanonical density operator ⇢, as defined in Eq. (1).
That is, expectation values h · iE,Z are always computed
by averaging over microstates that are confined to the
energy shell E.

We adopt units such that the Boltzmann constant
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It is important to point out that the primary thermody-
namic state variables of an isolated system are E and Z,
whereas the temperature T is a derived quantity that,
in general, does not uniquely characterize the thermo-
dynamic state of the system (see detailed discussion in
Sec. II C and Fig. 1 below).
To simplify notation, when writing formulas that con-

tain !,⌦, T , etc., we will not explicitly state the func-
tional dependence on Z anymore, while keeping in mind
that the Hamiltonian can contain several additional con-
trol parameters.

B. Microcanonical entropy candidates

We summarize the most commonly considered micro-
canonical entropy definitions and their related tempera-
tures. In Secs. III, IV and V, these candidates will be
tested as to whether they satisfy the zeroth, first and
second law of thermodynamics.

1. Gibbs entropy

The Gibbs entropy is defined by [1, 2]

SG(E) = ln⌦. (8a)

The associated Gibbs temperature

TG(E) =
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(8b)

is always non-negative, TG � 0, and remains finite as
long as ! > 0.
For classical Hamiltonian systems with microstates

(phase-space points) labelled by ⇠ = (⇠1, . . . , ⇠D), it is
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SB(E) = ln (✏ !) , (10a)
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a hotter body. As evident from the simple yet generic ex-
ample in Sec. II C, the microcanonical temperature T (E)
can be a non-monotonic or even oscillating function of en-
ergy and, therefore, temperature di↵erences do not suf-
fice to specify the direction of heat flow when two initially
isolated systems are brought into thermal contact with
each other.
The deficiencies of the above formulations can be over-

come by resorting to Planck’s version of the second law.
Planck postulated that the sum of entropies of all bod-
ies taking part in some process never decreases. This
formulation is useful as it allows one to test the various
microcanonical entropy definitions. More precisely, if A
and B are two isolated systems with fixed energy values
EA and EB and fixed entropies SA(EA) and SB(EB),
then their entropy after coupling, SAB(EA + EB) must
be larger than the sum of their original entropies,

SAB(EA + EB) � SA(EA) + SB(EB). (38)

We next analyze whether the inequality (38) is fulfilled
by the microcanonical entropy candidates in Sec. II B

A. Gibbs entropy

To verify Eq. (38) for the Gibbs entropy SG = ln⌦, we
have to compare the phase volume of the compound sys-
tems after coupling, ⌦(EA+EB), with the phase volumes
⌦A(EA) and ⌦B(EB) of the subsystems before coupling.
Starting from Eq. (21d), we find

⌦(EA + EB)

=

Z EA+EB

0
dE0 ⌦A(E

0)!B(EA + EB � E0)

=

Z EA+EB

0
dE0

Z E0

0
dE00!A(E

00)!B(EA + EB � E0)

�
Z EA+EB

EA

dE0
Z EA

0
dE00!A(E

00)!B(EA + EB � E0)

=

Z EA

0
dE00!A(E

00)

Z EB

0
dE000!B(E

000)

= ⌦A(EA)⌦B(EB).
(39)

This result implies that the Gibbs entropy of the com-
pound system is always larger than the sum of the Gibbs
entropies of the subsystems before they were brought into
thermal contact:

SGAB(EA + EB) � SGA(EA) + SGB(EB). (40)

Thus, the Gibbs entropy satisfies Planck’s version of the
second law.

B. Boltzmann entropy

To verify Eq. (38) for the Boltzmann entropy SG =
ln(✏!), we have to compare the ✏-scaled DOS of the com-

pound systems after coupling, ✏!(EA + EB), with the
product of the ✏-scaled DOS ✏!A(EA) and ✏!B(EB) be-
fore the coupling. But, according to Eq. (21b), we have

✏!(EA+EB) = ✏

Z EA+EB

0
dE0!A(E

0)!B(EA+EB�E0),

(41)
which can be larger or smaller than ✏2!A(EA)!B(EB).
Thus, there is no strict relation between Boltzmann en-
tropy of the compound system and the Boltzmann en-
tropies of the subsystems before contact. That is, the
Boltzmann entropy violates the Planck version of the sec-
ond law for certain systems, as we will show in Sec. VIC
with an example.
One might try to ‘rescue’ the Boltzmann entropy from

failing the Planck’s second law by assuming that ✏ may
always be chosen ‘su�ciently’ (i.e., infinitesimally) small,
so that the entropy ordering is governed by the powers
of ✏. Perhaps, a more appealing solution is provided by
the modified definition (15a) of the Boltzmann entropy
that is based on the Shannon entropy. This Shannon
entropy does satisfy Planck’s version of the second law
(but fails the zeroth and first law).
[Comment (Stefan): I guess we should also

show explicitly that the Shannon version of the

Boltzmann entropy satisfies the Second Law]

VI. EXAMPLES

discuss only on the level of prototypical DOS. DOS
prototypes suggested for examples

• normal system: simple power-law DOS (like classi-
cal ideal gas)

• anormal system: upside-down parabola (i.e.
quadratic) DOS with lower and upper bound

• system with extra bump: any of the above, but
with additional large and sharp (delta-like) peak at
the energy of your choice (moving the peak around
influences the energy distribution between systems
in contatc without necessarily changing entropies
or temperatures of systems before contact)

• possible further examples could include simple clas-
sical systems with finite ⌦(1)

The DOS of the normal system:

!(E) =
⌦0

✏0

(
(E/✏0)

↵�1
, 0 < E

0 , otherwise.
(42)

The DOS of the anormal system:

!̂
�
E
�
=

6⌦1
E+

8
<

:

E (E+ � E)

E2
+

, 0 < E < E+

0 , otherwise.
(43)
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can be a non-monotonic or even oscillating function of en-
ergy and, therefore, temperature di↵erences do not suf-
fice to specify the direction of heat flow when two initially
isolated systems are brought into thermal contact with
each other.
The deficiencies of the above formulations can be over-

come by resorting to Planck’s version of the second law.
Planck postulated that the sum of entropies of all bod-
ies taking part in some process never decreases. This
formulation is useful as it allows one to test the various
microcanonical entropy definitions. More precisely, if A
and B are two isolated systems with fixed energy values
EA and EB and fixed entropies SA(EA) and SB(EB),
then their entropy after coupling, SAB(EA + EB) must
be larger than the sum of their original entropies,

SAB(EA + EB) � SA(EA) + SB(EB). (38)

We next analyze whether the inequality (38) is fulfilled
by the microcanonical entropy candidates in Sec. II B

A. Gibbs entropy

To verify Eq. (38) for the Gibbs entropy SG = ln⌦, we
have to compare the phase volume of the compound sys-
tems after coupling, ⌦(EA+EB), with the phase volumes
⌦A(EA) and ⌦B(EB) of the subsystems before coupling.
Starting from Eq. (21d), we find
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This result implies that the Gibbs entropy of the com-
pound system is always larger than the sum of the Gibbs
entropies of the subsystems before they were brought into
thermal contact:

SGAB(EA + EB) � SGA(EA) + SGB(EB). (40)

Thus, the Gibbs entropy satisfies Planck’s version of the
second law.

B. Boltzmann entropy

To verify Eq. (38) for the Boltzmann entropy SG =
ln(✏!), we have to compare the ✏-scaled DOS of the com-

pound systems after coupling, ✏!(EA + EB), with the
product of the ✏-scaled DOS ✏!A(EA) and ✏!B(EB) be-
fore the coupling. But, according to Eq. (21b), we have
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which can be larger or smaller than ✏2!A(EA)!B(EB).
Thus, there is no strict relation between Boltzmann en-
tropy of the compound system and the Boltzmann en-
tropies of the subsystems before contact. That is, the
Boltzmann entropy violates the Planck version of the sec-
ond law for certain systems, as we will show in Sec. VIC
with an example.
One might try to ‘rescue’ the Boltzmann entropy from

failing the Planck’s second law by assuming that ✏ may
always be chosen ‘su�ciently’ (i.e., infinitesimally) small,
so that the entropy ordering is governed by the powers
of ✏. Perhaps, a more appealing solution is provided by
the modified definition (15a) of the Boltzmann entropy
that is based on the Shannon entropy. This Shannon
entropy does satisfy Planck’s version of the second law
(but fails the zeroth and first law).
[Comment (Stefan): I guess we should also
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VI. EXAMPLES

discuss only on the level of prototypical DOS. DOS
prototypes suggested for examples

• normal system: simple power-law DOS (like classi-
cal ideal gas)

• anormal system: upside-down parabola (i.e.
quadratic) DOS with lower and upper bound

• system with extra bump: any of the above, but
with additional large and sharp (delta-like) peak at
the energy of your choice (moving the peak around
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