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First Law — Energy-Conservation
AU = AQ + AW

AU change in internal energy
A(@) heat added on the system

AW  work done on the system

H. von Helmholtz: “Uber die Erhaltung der Kraft” (1847)

AU = (TAS)quasi—static o (pAV)quasi—static
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 IT IS MORE THAN THAT


Heat in Thermodynamics

irrev noneq

AU = AQ™ + AW

noneq

m Q=AU - AW

+ 1

must know must know
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MINUS FIRST LAW vs. SECOND LAW

-1st Law

R 2nd Law




Entropy in Stat. Mech.

S = ]{7]3 In Q(E, V, )
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Erunt multi qui, postquam mea scripta legerint, non ad
contemplandum utrum vera sint quae dixerim, mentem
convertent, sed solum ad disquirendum quomodo, vel
iure vel iniuria, rationes meas labefactare possent.

G. Galilei, Opere (Ed. Naz., vol. |, p. 412)

There will be many who, when they will have read my
paper, will apply their mind, not to examining whether
what | have said is true, but only to seeking how, by
hook or by crook, they could demolish my arguments.



Equilibrium Theromdynamics
of Open Quantum Systems



Weakly coupled systems

System @ Environment in thermal
equilibrium at total energy Eiot

Eratnron foceank

‘\‘\ K ‘ pﬁ(x) — Z*lefﬁHs(X)

““/ ‘:/ Syt ‘ 7 — /drse—ﬁHs(x)
\ \ L 5/
x € ['s : phase space of system
- d3N d3N
e dlhs = 7:3,\1 P, Volume element
_105t0t .
Einteraction < Esystem 8= kBlaEtot . Inverse temperature
(o}

Standard form of canonical equilibrium of a subsystem holds for
large systems with short-range interactions:

2/3
Einteraction X VS/ > Esystem x Vs



Fs=—-81tInZ : free energy

0 .
Us = ~95 InZ = (Hs)s : internal energy
Ss =kgInZs — kB/Baaﬁ InZs = —kg(Inps)s : entropy
yielding
Fs = Us — TS (1)
0
Us = BT (BFs) (2)
0
Ss = kp3? == Fs (3)

op

Any pair of the three equations (1 — 3) implies the third one.
Potentials Fs, Us and Ss satisfying (1 —=3) are
THERMODYNAMICALLY CONSISTENT.
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Strongly coupled systems

o b

D
>

macroscopic system  solvated system,
microscopic system with long-range e.g. pinch of salt in
interactions a pot of water

Heot(x,y) = Hs(x) + Hi(x,y) + Hg(y) : total system’s Hamiltonian

x€ls, Ts phasespace of system

y€lg, [Ip phase space of environment



Strongly coupled systems

Hiot(x,y) = Hs(x) + Hi(x,y) + Hg(y) : total system's Hamiltonian
x€ls, [s phase space of system
yelg, [ phase space of environment

Let the total system stay in a canonical equilibrium state at inverse
temperature 3:

pa(x.y) = Zihe e
Ziot = / dlsdl ge™AHher(x)

Then the system is in the state

pa(x) = / dTsps(x,y)
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The reduced state pg(x) in general differs from the Gibbs state

Z5 e PHX) of a weakly coupled system. To write pg(x) in the
form of a Gibbs state one introduces the HAMILTONIAN OF MEAN
FORCE H*(x) defined by

e_ﬁH*(X) — <e_6(H5(x)+Hl(x7y))>B
=71 / dF e BUHS(+Hi(xy)+ e ()

Zg = /drBe—ﬁHB(Y)

H*(x) = HS(X) _ 6—1 |n<e—ﬁH,-(x,y)>B
p(x) = Zgte P

2 — [ drse " 2125


hänggi
Hervorheben

hänggi
Hervorheben

hänggi
Hervorheben

hänggi
Hervorheben

hänggi
Hervorheben

hänggi
Hervorheben


Quantum interlude

s ®Tg=Hs®@Hp

/dr /drb:>Tr5TrB

p(x,y) = p
Hior = Htot

A* = —B71In Tr,ge*ﬁh'm‘/Tre*ﬁHB
Py = 251 o= B

Zs = Ztot/ZB = TrBTrSe_BHt“/TrBe_BHB
For quantum systems, the Hamiltonian of mean force ALWAYS
depends on temperature.
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Warning

W1 Note that A* (H*(x)) determines ps (pg(x)) but not vice
versa:

Inpg = —BH* —InZs

In other words, H¢ cannot be inferred from the intrinsic point of
view of the open system, say in terms of tomography of the open
system density matrix. Additional information from the
environment in the form of Zs = Zot/Zp is required.
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Thermodynamics

Fs = —5—1 InZs = Frot — Fg

Us = BﬁFS Uiot — Up

Ss = kBBQGB s = Stot — SB

02
g0 Fs = Gou = G

The potentials Fs, Us and Ss are thermodynamically consistent
because they follow from a partition function.

Cs = —kgfs’

R.P. Feynman, F.L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).

G.W. Ford, J.T. Lewis, R.F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985).
P. Hanggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008).
G.-L. Ingold, P. Hanggi, P. Talkner, Phys. Rev. E 79, 061105 (2009).
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Further warnings

W2 INTERNAL ENERGY

Us = _8(?8 InZs = <§35H*>5 = (H")s + B(OH"/0B)s

(Vs = Zsl/dl’s e PH

The internal energy in general does not agree with the average of
the Hamiltonian of mean force. The temperature dependence of
H* entails an additional contribution.

W3 ENTROPY

Ss = —kg(In ps)s + keB(OH* /OB)s

The entropy in general deviates from the Shannon-Gibbs (von
Neumann) entropy due to the temperature dependence of the
Hamiltonian of mean force.
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Conditional Entropy
T(xY)=HKXKY)

HOO @ WY e H (XJ y) - (~ ,)(x)l’n ;o(x))

H(Y[X) = —Z p(x,))fn;o(x,))

= H(YJx)
="'x>,_3 POy hn plylx) > 0

HOXY)

Quantum Conditional Entropy

von NEUMANN: SV” (_?z) = - Tr'gz Png}__.
» CoupLING 4

-“"\ R o
C 2th f%enmmd,
| s =S (g2 )= S, (s57)

SYSTEM entrop.
BATH Sxx8 L

2y can _ can
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an*ro,:) t =+ gtan



THE PROBLEM
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PHYSICAL REVIEW A 69, 052109 (2004)

Is the dynamics of open quantum systems always linear?

Karen M. Fonseca Romero,* Peter Talkner, and Peter Hinggi
Instint fiir Physik, Universitit Augsburg, Universititsstrasse 1, D 86315 Augsburg, Germany
(Received 1 December 2003; published 17 May 2004)

We study the influence of the preparation of an open gquantum system on its reduced time evolution. In
contrast to the frequenfly considered case of an initial preparation where the total density matrix factorizes into
a product of a system density matrix and a bath density matrix the time evolution generally is no longer
governed by a linsar map ner is this map affine. Put differently, the evolution is truly nonlinear and cannot be
cast into the form of a linear map plus a term that is independent of the initial density matrix of the open
quantum system. As a consequence, the inhomogeneity that emerges in formally exact generalized master
equations is in fact a nonlinear term that vanishes for a factorizing initial state. The general results are
elucidated with the example of two interacting spins prepared at thermal equilibrium with one spin subjected
to an external field. The second spin represents the environment. The field allows the preparation of mixed
density matrices of the first spin that can be represented as a convex combination of two limiting pure states,
i.¢., the preparable reduced density matrices make up a convex set. Moreover, the map from these reduced
density matrices onto the corresponding density matrices of the total system is affine only for vanishing
coupling between the spins. In general, the set of the accessible total density matrices is nongonvex.
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Examples

Jaynes Cummings model

N 1 1
Hiot = %az +Q (aTa + 2) + X0z (a*a + >

2
~ TV
Hs Fg A;
partition functions
eB/2 s FB(e+x)/2
ZtOt - q+ + q— Y q:t - 1 o e_ﬁ(Q:tX)
1

57 2sinh(89)2)
Zs=2(q+ + q-)sinh(52/2)



Entropy and specific heat

Q/e=3
Michele
Campisi

Q/e=1/3




Nonequilibrium aspects of
work and heat fluctuations



Aspects of work fluctutions:
classical case



Work

Classical closed system:

w = H(z(r), (7)) = H(z.\(0))
- [ a0
0 t

- /0 CaHEDAD) 5y

Note that a proper gauge must be used in order that the
Hamiltonian yields the energy.

Work characterizes a process; it comprises information from states
at distinct times. Hence it is not an observable.

The measurement of the quantum versions of power- and
energy-based work definitions requires different strategies.
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Aspects of quantum
work

Projective & generalized
measurements



WAl = U o[\ H(Ae) U o[\l — H( o)
= HI(Ae) — H(No)

H
/ dt}\taHa)\(A
t




3. “UNTOUCHED” WORK:

(w) = /dz[H(z(t),)\(t)) — H(z,(0))]p(2) valid !
(w) = Tr[H" (A(t)) — H(A(0))]p(0) 77

There is no operational definition of untouched work as a proper
random variable.

With untouched work it would be possible to extract energy from
quantum correlation and in particular from entanglement in

multipartite systems.

A. Allahverdyan, Phys. Rev. E 90, 032137 (2014).

K.V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. Acin, Phys. Rev. Lett.
111, 240401 (2013).
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A first NO-GO Theorem

M Perarnau-Llobet. E Baumer, KV Hovhannisyan, M Huber and Acin,
Phys. Rev. Lett. 118, 070601 (2017) ; Quoted from our RMP 2020:

“Perarnau-Llobet et al. (2017) demonstrated that no
measurement scheme of work exists that is linear in the initial
state of the system and for which the following two conditions
are simultaneously satisfied: (1) The average work agrees
with the difference of the average final and initial energies for
any initial state, and (2) the resulting work statistics agrees
for diagonal initial states (i.e., \bar p(0) = p(0) with the
TPPEMS result [Eq. (89)].”



Probability of work

Prro(w) =D 6(w — [em(tr) — en(to)])p(m|n)pn




Choose u = if3

<e_ﬂw> B /dw e_ﬁwpthfo(w)
= G0 (1) quantum
= Tre BHn(tr) gfH(t0) 7=1 ()= FH(10) Jarzynski
_ Tre—ﬁH(tf)/Z(tO) equality

= Z(tr)/Z(to)
_ o BAF




More facts, open problems, pitfalls

A. The holy grail for classical/quantum non-equilibrium thermodynamics will never
be realized (in my lifetime). In contrast to equilibrium thermodynamics with its
Grande Laws; -- it rather will be characterized by a hapless search for unifying
principles and cumbersome experimental challenges.

B. Thermal quantum machines: How to go beyond the usual scenario used for weak
coupling scenarios where individual (work)-strokes are implemented by strict
thermally adiabatic (i.e. with no heat exchange), i.e. strict unitary work strokes,
followed by strict heat exchanges (i.e. in absence of any simultaneously present
work and heat exchanges (thermalization) -- such as in those stylized quantum
Otto-cycles.

Typically is however, that both - heat and work — are acting both during a
corresponding stroke-duration. Likewise, simultaneous work-heat exchanges
occur while coupling TO and coupling OFF thermal baths (e.g. with the two
isothermal strokes in the Carnot cycle.



Weork ~¢pe reetor WO

by De ffrer Py~ Zerrek
PRE T4, 0tul O3 (2016)

G(u) = Tr exp(iu (W - WO) rho (B)
with A/

WO = sum_n Pi_n (HAH_tau-H_0) Pi_n (C) o~ + .
anc 3 W, = < U Him) L Ino)

rho = \sum_n p(n) Pi_n = exp(- betaH_0)/Z. 0 (D)
- 2 in J,) > P )

HAH_tau is the Hamilton operator in the Heisenberg picture at time tau; Pi_n are the projection

operators on the energy-eigenstates of H_O. F'
- ~Raf S (o || Lf
< A W ﬁ (94" ' ...“‘ ~ )
Note that (A) and (7) imply (B) and (C) and vice versa.

Obviously, (B) is the characteristic function of the hermitian operator WO

defined in (C) which is the old work operator projected onto the eigenbasis of H_0. Hence, you
have introduced a new work operator in spite of your initial statement that work operators are
deficient.

Let me close with the simple example of aSpin'1/2in @ magnetic field which undergoes a
'sudden change:

H_0 = epsilon_0 sigma_z/2 ==>H_1 = epsilon_1 \sigma_x/2

In this case the final Hamiltonian projected onto the eigenbasis of the initial one vanishes and
the work operator (7) becomes [’ Q @

' — [

W 0 SR F_{D v
WO=-H_0

and the possible work values just coincide with the spectrum of the initial Hamiltonian in
contrast to the result of the two measurement scheme consisting of four possible work values
given by the differences of the initial and final energy eigenvalues.

Finally let me come back to your email, at the end of which you say that you take into account
the cost of measurement. But where in your theory is the measurement? In the abstract of your
paper you say "we completely omit quantum measurements in the definition of quantum
work". | see here a contradiction.

Or do | misunderstand?

| hope this message finds you in good spirit. If | have been critical it merely has been for the
sake of science and understanding but it is not meant in any personal way.
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A QUESTION ?




REVIEWS OF MODERN PHYSICS, VOLUME 83, OCTOBER-DECEMBER 2011

Erratum: Colloquium: Quantum fluctuation relations:
Foundations and applications
[Rev. Mod. Phys. 83,771 (2011)]

Michele Campisi, Peter Hanggi, and Peter Talkner

(published 19 December 2011)
DOI: 10.1103/RevModPhys.83.1653 PACS numbers: 05.30.—d, 05.40.—a, 05.60.Gg, 05.70.Ln, 99.10.Cd

The first line of Eq. (51) contains some typos: it correctly reads
Glu; Al = Trf]”eiu[ﬂﬁ’(/\f)—H(An)]e—BH(Ao)/Z(/\O)_ 51)

This compares with its classical analog, i.e., the second line of Eq. (27).
Quite surprisingly, notwithstanding the identity

T dHHEA
H?(AT)—H(Ao)=f gy ST (1)
0 A,
one finds that generally
, o dHHE(A
T MHIA)=HMI = T exp[iu [ th,%]. 2)
0 ‘

As a consequence, it is not allowed to replace H 2 (A,) — FH (A,), with 1B dtA,0HH(A,)/d A, in Eq. (51). Thus, there is no
quantum analog of the classical expression in the third line of Eq. (27). This is yet another indication that “work is not an
observable” (Talkner, Lutz, and Hinggi, 2007)). This observation also corrects the second line of Eq. (4) of the original
reference (Talkner, Lutz, and Hinggi, 2007).

The correct expression is obtained from the general formula

T exp[A(r) — A(0)] = Texp[ [()T dt(% eA(’))e_A(t) ] 3)

where A(f) is any time dependent operator [in our case A(f) = iuJH #(A,)]. Equation (3) can be proved by demonstrating that the
operator expressions on either side of Eq. (3) obey the same differential equation with the identity operator as the initial
condition. This can be accomplished by using the operator identity de?® /dt = [} dses"DA(r)e! =40,

There are also a few minor misprints: (i) The symbol ds in the integral appearing in the first line of Eq. (55) should read dt.
(i1) The correct year of the reference (Morikuni and Tasaki, 2010) is 2011 (not 2010).

The authors are grateful to Professor Yu. E. Kuzovlev for providing them with this insight, and for pointing out the error in the
second line of Eq. (51).
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WORK IS NOT AN OBSERVABLE

P. Talkner et al. PRE 75 050102 (2007)

Work characterizes PROCESSES, not states!
(6W is not exact)

Work cannot be represented by a Hermitean operator W

ﬂ Wizo; \] — w = Ejy —E}°

- two-measurements

E}t =instantaneous eigenvalue: H(\;)[Y)t) = EXt|yp)t)



Characteristic function of work

th,to(u) = / dw eiuwptf,fo(w)

= Z efuem(tr) ’ue"(tO)Ter(tf)Utf,foantt,top"

= Z Tre" ) P (te) Ugy e ™M) pp Ut pn

_ Tre’”H"’(t")e—’“H(t")ﬁ(to)

= <eiuH(tf)e—iuH(to)>to
Hi(te) = UL, o H(te) U o,

= Pa(to)p(to)Pa(to),  plto) = p(to) <= [p(to), H(to)]

P. Talkner, P. Hanggi, M. Morillo, Phys. Rev. E 77, 051131 (2008)
P.Talkner, E. Lutz, P. Hanggi, Phys. Rev. E 75, 050102(R) (2007)
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Generalized energy measurements

Positive operator valued measures (POVM) as generalized

measurements
projective POVM
M, M,, M,i measurement operators

Znn":]]' Zn
G

En Mnply Zn MnPMI
TrM,poM, TrM,pM;)

NapNn/pn | pn = anMr]:/Pn

MiM, =1

Ppm: unselectice pm state
pn = Prob(nin p)
pn: selective pm state
normalization

e —————
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Generalized energy measurements

Positive operator valued measures (POVM) as generalized

measurements
projective POVM
M, M,, M,T, measurement operators

Zn Mnply Zn anMrt
TrM,poM, TrM,pM;)

NnoMn/Pn | pn = anMr];/Pn

Znn”:]]' Zn

measurement error:

MiM, =1

Ppm: unselectice pm state
pn = Prob(n in p)
pn: selective pm state
normalization

p(n|m) = TrM,N M /Te0,, = TeMIM,N,, /Tel

A measurement is ERROR-FREE if

p(n|m) = On,m
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Probability of work

H(t)<Pn,)\(t) = en(t)@n,k(t)
Pa(t) = Z len (1)) (@na(t)]
A

Pn = Tr Pn(tO)p(tO)
= probability of being at energy e,(ty) at t = ty

pn =Pn(to)p(to) Pn(to)/pn
— state after measurement

pn(tf) :Utf,toanE::,to

p(min) = TrPm(tr)pn(tr)
= conditional probability of getting to energy e, (tr)






