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Abstract

The dynamics of Brownian motion has widespread applications extending from transport in designed micro-channels up to its prominent role
for inducing transport in molecular motors and Brownian motors. Here, Brownian transport is studied in micro-sized, two-dimensional periodic
channels, exhibiting periodically varying cross-sections. The particles in addition are subjected to an external force acting alongside the direction of
the longitudinal channel axis. For a fixed channel geometry, the dynamics of the two-dimensional problem is characterized by a single dimensionless
parameter which is proportional to the ratio of the applied force and the temperature of the particle environment. In such structures entropic effects
may play a dominant role. Under certain conditions the two-dimensional dynamics can be approximated by an effective one-dimensional motion of
the particle in the longitudinal direction. The Langevin equation describing this reduced, one-dimensional process is of the type of the Fick–Jacobs
equation. It contains an entropic potential determined by the varying extension of the eliminated channel direction, and a correction to the diffusion
constant that introduces a space dependent diffusion. Different forms of this correction term have been suggested before, which we here compare
for a particular class of models. We analyze the regime of validity of the Fick–Jacobs equation, both by means of analytical estimates and the
comparisons with numerical results for the full two-dimensional stochastic dynamics. For the nonlinear mobility we find a temperature dependence
which is opposite to that known for particle transport in periodic potentials. The influence of entropic effects is discussed for both, the nonlinear
mobility and the effective diffusion constant.
© 2008 Elsevier Ireland Ltd. All rights reserved.
PACS: 05.60.Cd; 05.40.Jc; 02.50.Ey
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. Introduction

The phenomenon of entropic transport is ubiquitous in bio-
ogical cells, ion channels, nano-porous materials, zeolites and

icrofluidic devices etched with grooves and chambers. Instead
f diffusing freely in the host liquid phase the Brownian parti-
les frequently undergo a constrained motion (Liu et al., 1999;
iwy et al., 2005; Berezhkovskii and Bezrukov, 2005; Hille,
001; Barrer, 1978; Chou and Lohse, 1999; Kettner et al., 2000;
atthias and Müller, 2003; Ai and Liu, 2006; Volkmuth and
ustin, 1992; Nixon and Slater, 2002; Chang and Yethiraj,
006). The geometric restrictions to the system’s dynamics

esults in entropic barriers and regulate the transport of parti-
les yielding important effects exhibiting peculiar properties.
he results have prominent implications in processes such as
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atalysis, osmosis and particle separation (Liu et al., 1999;
iwy et al., 2005; Berezhkovskii and Bezrukov, 2005; Hille,
001; Barrer, 1978; Chou and Lohse, 1999; Kettner et al., 2000;
atthias and Müller, 2003; Ai and Liu, 2006; Volkmuth and
ustin, 1992; Nixon and Slater, 2002; Chang and Yethiraj,
006) and, as well, for the noise-induced transport in periodic
otential landscapes that lack reflection symmetry (Brownian
atchet systems) (Hänggi et al., 2005; Astumian and Hänggi,
002; Reimann and Hänggi, 2002) or Brownian motor transport
ccurring in arrays of periodically arranged asymmetric obsta-
les, termed “entropic” ratchet devices (Derenyi and Astumian,
998). Motion in these systems can be induced by imposing
ifferent concentrations at the ends of the channel, or by the
resence of external driving forces supplying the particles with
he energy necessary to proceed. The study of the kinetics of

he entropic transport, the properties of transport coefficients in
ar from equilibrium situations and the possibility for transport
ontrol mechanisms are pertinent objectives in the dynamical
haracterization of those systems.
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dx.doi.org/10.1016/j.biosystems.2008.03.006
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Because the role of inertia for the motion of the particles
hrough these structures can typically be neglected the Brownian
ynamics can safely be analyzed by solving the Smoluchowski
quation in the domain defined by the available free space upon
mposing the appropriate boundary conditions. Whereas this

ethod has been very successful when the boundaries of the
ystem possess a rectangular shape, the challenge to solve the
oundary value problem in the case of nontrivial, corrugated
omains represents a difficult task. A way to circumvent this
ifficulty consists in coarsening the description by reducing the
imensionality of the system, keeping only the main direction of
ransport, but taking into account the physically available space
y means of an entropic potential. The resulting kinetic equation
or the probability distribution, the so called Fick–Jacobs (FJ)
quation, is similar in form to the Smoluchowski equation, but
ow contains an entropic term. The entropic nature of this term
eads to a genuine dynamics which is distinctly different from
hat observed when the potential is of energetic origin (Reguera
t al., 2006). It has been shown that the FJ equation can provide
very accurate description of entropic transport in channels of
arying cross-section (Reguera et al., 2006; Burada et al., 2007;
osinska et al., 2008). However, the derivation of the FJ equa-

ion entails a tacit approximation: the particle distribution in the
ransverse direction is assumed to equilibrate much faster than
n the main (unconstrained) direction of transport. This equili-
ration justifies the coarsening of the description leading in turn
o a simplification of the dynamics, but raises the question about
ts validity when an external force is applied. To establish the
alidity criterion of a FJ description for such biased diffusion in
onfined media is, due to the ubiquity of this situation, a subject
f primary importance.

Our objective with this work is to investigate in greater detail
he FJ-approximation for biased diffusion and to set up a cor-
esponding criterion describing its regime of validity. We will
nalyze the biased movement of Brownian particles in 2D peri-
dic channels of varying cross-section and formulate different
riteria for the validity of such a FJ-description. On the basis of
ur numerical and analytical results we recapitulate the striking
nd sometimes counterintuitive features (Reguera et al., 2006),
hich arises from entropic transport and which are different

rom those observed in the more familiar case with energetic,
etastable landscapes (Hänggi et al., 1990).

. Diffusion in Confined Systems
Transport through pores or channels (like the one depicted
n Fig. 1) may be caused by different particle concentrations

aintained at the ends of the channel, or by the application of

ig. 1. Schematic diagram of a channel confining the motion of forced Brownian
articles. The half-width ω is a periodic function of x with periodicity L.
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xternal forces acting on the particles. Here we will exclusively
onsider the case of force driven transport. The external driving
orce is denoted by �F = F�ex. It points into the direction of the
hannel axis. In general, the dynamics of a suspended Brownian
article is overdamped (Purcell, 1977) and well described by the
angevin equation:

d�x
dt̃

= �F +
√

ηkBT �ξ(t̃). (1)

here t̃ is the time, �x the position vector of the particle, η its
riction coefficient, kB the Boltzmann constant and T is the tem-
erature. The thermal fluctuating forces which the surrounding
uid exerts on the particle are modeled by zero-mean Gaussian
hite noise �ξ(t̃), obeying the fluctuation–dissipation relation

ξi(t̃)ξj(t̃′)〉 = 2δijδ(t̃ − t̃′) for i, j = x, y, z.
In addition to Eq. (1), the full problem is set up by imposing

eflecting boundary conditions at the channel walls. The form
f the channel will be specified below.

To further simplify the treatment of this model we introduce
imensionless variables. We measure all lengths in units of the
eriod L, i.e.

= L�r, (2)

here �r is the dimensionless position vector of the particle.
s unit of time τ we choose twice the time it takes for the
article to diffusively cover the distance L which is given by
= L2η/(kBT ), hence

= τt. (3)

n these dimensionless variables the Langevin equation reads

d�r
dt

= �f + �ξ(t). (4)

here 〈�ξ(t)〉 = 0 and 〈�ξ(t)�ξ(t′)〉 = 2δi,jδ(t − t′) for i, j = x, y, z

nd where the dimensionless force

� = f�ex and f = LF

kBT
(5)

ontains the dimensionless parameter f that characterizes the
orce as the ratio of the work which it performs on the particle
long a distance of the length of the period and the thermal
nergy. The corresponding Fokker–Planck equation for the time
volution of the probability distribution P(�r, t) takes the form
Risken, 1989; Hänggi and Thomas, 1982):

∂P(�r, t)
∂t

= −�∇�J(�r, t), (6a)

here �J(�r, t) is the probability current:

�(�r, t) = (�f − �∇)P(�r, t), (6b)

ote that for channels with similar geometry, which are

elated by a scale transformation �x → λ�x, λ > 0, the transport
roperties are determined by the single dimensionless param-
ter f which subsumes the period lengths, the force and the
emperature of the surrounding fluid.
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The reflection of particles at the channel walls leads to a
anishing probability current at the boundaries. Therefore, the
oundary conditions at the channel walls are

�(�r, t)�n = 0 �r ∈ channel wall. (7)

here �n denotes the normal vector field at the channel walls.
The boundary of a 2D periodic channel which is mirror

ymmetric about its axis is given by the periodic functions
= ±ω(x), i.e. ω(x + 1) = ω(x) for all x, where x and y are the
artesian components of �r. In this case, the boundary condition
ecomes

dω(x)

dx

[
fP(x, y, t) − ∂P(x, y, t)

∂x

]
+ ∂P(x, y, t)

∂y
= 0, (8)

t y = ±ω(x). Except for a straight channel with ω = const,
here are no periodic channel shapes for which an exact ana-
ytical solution of the Fokker–Planck Eq. (6) with boundary
onditions (8) is known. Approximate solutions though can be
btained on the basis of an one-dimensional diffusion problem
n an effective potential. Narrow channel openings, which act
s geometric hindrances in the full model, show up as entropic
arriers in this one-dimensional approximation (Reguera et al.,
006; Burada et al., 2007; Jacobs, 1967; Zwanzig, 1992; Reguera
nd Rubı́, 2001; Kalinay and Percus, 2006). This approach is
alid under conditions that will be discussed below in some
etail.

. The Fick–Jacobs Approximation

In the absence of an external force, i.e. for �f = 0, it was
hown (Jacobs, 1967; Zwanzig, 1992; Reguera and Rubı́, 2001;
alinay and Percus, 2006) that the dynamics of particles in

onfined structures (such as that of Fig. 1) can be described
pproximatively by the FJ equation, with a spatially dependent
iffusion coefficient:

∂P(x, t)

∂t
= ∂

∂x

(
D(x)ω(x)

∂

∂x

P

ω(x)

)
. (9)

his 1D equation is obtained from the full 2D Smoluchowski
quation upon the elimination of the transversal y coordinate
ssuming fast equilibration in the transversal channel direc-
ion. Here P(x, t) = ∫ ω(x)

−ω(x) dy P(x, y, t) denotes the marginal
robability density along the axis of the channel. We note
hat for three-dimensional channels an analogue approximate
okker–Planck equation holds in which the function ω(x) is to
e replaced by πω2(x) (area of cross-section). In the original
ork by Jacobs (1967) the 1D diffusion coefficient D(x) is con-

tant and equals the bare diffusion constant which is unity in
he present dimensionless variables. Later, Zwanzig (1992) and
eguera and Rubı́ (2001) proposed different spatially dependent

orms of the 1D diffusion coefficient.

.1. Spatially Dependent 1D Diffusion Coefficients
The 1D diffusion coefficient suggested by Zwanzig results
rom a systematic expansion in terms of the gradient of the
oundary function ω(x). In leading order he obtained D(x) =

c
f

d
v

ms 93 (2008) 16–22

− γω′(x)2 + . . ., where γ = 1/3 for the considered 2D struc-
ure (for a 3D structure, γ = 1/2) and the prime denotes the
erivative with respect to x. Interpreting this result as the first
wo terms of a geometric series Zwanzig proposed his resummed
xpression for the 1D diffusion coefficient reading

Z(x) = 1

1 + γω′(x)2 . (10)

eguera and Rubı́ (2001) put forward a different form of the 1D
iffusion coefficient:

RR(x) = 1

(1 + ω′(x)2)
γ , (11)

hich also can be considered as a resummation of Zwanzig’s
erturbational result. Yet another form of the 1D diffusion coef-
cient was proposed by Kalinay and Percus (2006). For the
iased diffusion discussed here the results obtained with the
alinay–Percus diffusion coefficient differ only little from those
btained by the Reguera-Rubı́ diffusion coefficient. Therefore
e do not further consider the Kalinay–Percus diffusion coeffi-

ient.

.2. Constant Bias along the Channel Direction

In the presence of a constant force F along the direction of
he channel the FJ Eq. (9) can be recast into the form (Reguera
t al., 2006; Burada et al., 2007; Reguera and Rubı́, 2001):

∂P

∂t
= ∂

∂x
D(x)

(
∂P

∂x
+ dA(x)

dx
P

)
(12)

ith the dimensionless free energy A(x):=E − S = −f x −
n ω(x). In physical dimensions the energy is Ẽ ≡ kBTE =
Fx̃ (x̃ = xL) and the dimensional entropic contribution is

˜ ≡ kBTS = kBT ln ω. For a periodic channel this free energy
ssumes the form of a tilted periodic potential. In the absence of
force the free energy is purely entropic and Eq. (12) reduces

o the FJ Eq. (9). On the other hand, for a straight channel the
ntropic contribution vanishes and the particle is solely driven
y the external force.

.3. Nonlinear Mobility and Effective Diffusion

Key quantities of particle transport through periodic channels
re the average particle current, or equivalently the nonlinear
obility, and the effective diffusion coefficient. For a parti-

le moving in a one-dimensional tilted periodic potential the
eights �V of the barriers separating the potential wells pro-
ide an additional energy scale apart from the work of the force
L and the thermal energy kBT . Hence, at least two dimen-
ionless parameters, say �E/(kBT ) and FL/(kBT ) govern the
ransport properties of these systems. In contrast, as already
oted in the context of the full 2D model the transport through

hannels is governed by the single dimensionless parameter
= FL/(kBT ). This, of course, remains to hold true in the one-

imensional approximation which models the transversal spatial
ariation in terms of an entropic potential.
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For any non-negative force the average particle current in
eriodic structures can be obtained from (Reimann et al., 2001):

ẋ〉 = 〈t(x0 → x0 + 1)〉−1 (13)

here t(a → b) denotes the first time of a particle which starts
t x = a to arrive at x = b. The angular brackets refer to an aver-
ge over the fluctuating force. Note that the resulting mean first
assage time 〈t(x0 → x0 + 1)〉 diverges for a vanishing force
nd consequently leads to a vanishing current. A positive force
revents the particle to make far excursions to the left, hence
eading to a finite mean first passage time as well as a finite cur-
ent. Within the one-dimensional approximation, cf. Eq. (12), the
oments of the first passage time t(a → b) can be determined

ecursively by means of

tn(a → b)〉 = n

∫ b

a

dx
1

D(x)
exp(A(x))

∫ x

−∞
dy

× exp(−A(y))〈tn−1(y → b)〉. (14)

or n = 0 the starting value of the iteration is given by 〈t0(a →
)〉 = 1.

The nonlinear mobility μ(f ). is defined by

(f ) = 〈ẋ〉
f

. (15)

sing Eqs. (13) and (14) one can obtain the following
tratonovich formula for the nonlinear mobility (Reguera et al.,
006)

(f ) = 1 − exp(−f )

f
∫ 1

0 dz I(z, f )
, (16a)

here

(z, f ):=h−1(z)

D(z)
exp(−fz)

∫ z

z−1
dz̃ h(z̃) exp(f z̃), (16b)

epends on the dimensionless position z, the force f and the
hape of the tube given in terms of the half-width ω(x) and its
rst derivative.

The effective diffusion coefficient is defined as the asymptotic
ehavior of the variance of the position

eff = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2

2t
. (17)

t is related to the first two moments of the first passage time by
he expression (Reimann et al., 2001; Lindner et al., 2001):

eff = 〈t2(x0 → x0 + 1)〉 − 〈t(x0 → x0 + 1)〉2

2〈t(x0 → x0 + 1)〉3 . (18)

fter some algebra it can be transformed to read

eff =
∫ 1

0 dz
∫ z

z−1 dz̃N(z, z̃, f )

[
∫ 1

0 dzI(z, f )]
3 , (19a)
here

(z, z̃, f ):=D(z̃)

h(z)

h(z̃)

D(z)
[I(z̃, f )]2 exp(−fz + f z̃). (19b)

P

t

o the numerically simulated exact values, cf. Eq. (21), and the lines to the
nalytically calculated, approximative values, cf. Eq. (16), with the diffusion
oefficients: D0 = 1 (solid line); DRR(x) (dashed line), cf. Eq. (11), and DZ(x)
dashed-dotted line), cf. Eq. (10).

.4. Exact Numerics for the 2D Channel

The predicted dependence of the average particle current
nd the effective diffusion coefficient, predicted above, was
ompared with Brownian dynamic simulations performed by
numerical integration of the Langevin equation Eq. (4), within

he stochastic Euler-algorithm. The shape of the exemplarily
aken 2D channel is described by

(x):=a sin(2πx) + b, (20)

here b > a. The sum and difference of the two parameters
+ b and b − a give half of the maximal and the minimal width
f the channel, respectively. Moreover, a controls the slope of the
hannel walls which determines the one-dimensional diffusion
oefficient D(x).

For the considered channel configuration, cf. Eq. (20), the
oundary condition becomes ω(x) = a(sin(2πx) + κ), where
= b/a = 1.02 throughout this paper. For a we chose values

etween 1 and 1/2π. This choice of parameters corresponds to
ather short channels for a = 1 and a more elongated one for a =
/2π. In all cases the width of the widest opening of the channel
s larger by a factor of 100 than the width at narrowest opening.
ne may therefore expect strong entropic effects for these chan-
els. The particle current and effective diffusion coefficient were
erived from an ensemble-average of about 3 × 104 trajectories:

ẋ〉 = lim
t→∞

〈x(t)〉
t

, (21)

nd Eq. (17), respectively.
Fig. 2 demonstrates that the resummed one-dimensional

iffusion coefficient DRR(x) leads to a considerably better agree-
ent with the numerical results than the constant diffusion and

he diffusion coefficient DZ(x) proposed by Zwanzig. Therefore
e used DRR(x) for all following calculations.

. Validity of the Fick–Jacobs Description in the

resence of a Constant Bias

The reduction of dimensionality leading to the FJ equa-
ion relies on the assumption of equilibration in the transverse
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irection which results in an almost uniform distribution of
he transversal positions y at fixed values of the longitudinal
oordinate x. One can formulate two different sets of criteria
etermining first, whether the FJ equation describes the relax-
tion towards the stationary state, say in presence of periodic
oundary conditions, or second, whether the stationary state, but
ot necessarily the relaxation towards this state, can be described
y the FJ equation.

Although we here are mainly interested in the second, weaker,
ype of criteria which are sufficient to guarantee the validity
f the transport properties predicted by the FJ equation, we
hortly formulate stronger criteria which must be satisfied if
he FJ equation is employed to determine the relaxation towards
quilibrium. Then, of course, the time scale of equilibration in
ransversal direction τT must be short compared to the relevant
ime scales in longitudinal direction, τL (Burada et al., 2007).
he time scale τT can be estimated by the time to diffusively
over the widest transversal distance of the channel. It therefore
s given by

T = 2(a + b)2. (22)

he time scales characterizing the longitudinal motion are the
iffusion time τdL over the length of a period, which is one in
ur dimensionless variables, and the time τfL it takes to drag a
article over this distance by applying the force f. These times
re given by

dL = 1/2 and τfL = 1/f (23)

ence, a necessary condition, that the FJ equation reliably
escribes transient processes can be formulated as

(a + b)2 � min(1/2, 1/f ) (24)

his condition is fulfilled only for rather elongated channels
eing at least five times as long as wide.

As already mentioned in the presence of periodic boundary
onditions in the longitudinal direction, the particle distribution
escribed by the Fokker–Planck Eq. (6) approaches a stationary
istribution. Even in the case if the first criterion (24) is violated
he stationary solution of the FJ Eq. (12) may still yield the cor-
ect marginal probability density provided transversal cuts of the
wo-dimensional stationary probability density are practically
onstant. Such a uniform distribution in transversal direction
trictly holds in the absence of externally imposed concentration
ifferences if the force f vanishes or if the channel is straight.
or channels with varying width the narrow positions confine

he positions of particles. From there they are dragged by the
orce and at the same time they perform a diffusive motion until
he channel narrows again. The required uniform distribution in
he transversal direction can only be achieved if the diffusional

otion is fast enough in comparison to the deterministic drift

nder the influence of f. In other words, the diffusional spreading
ithin the time the force drags the particle from the narrowest

o the widest place in the channel must be at least of the order
f the widest channel width. This leads to the second, weaker,

t
s

ional results). The solid line demonstrates the a−2-dependence of the critical
alues predicted by Eq. (25). The inset depicts the same data on a logarithmic
cale.

riterion

a + b)2 ≤ 1

2f
⇔ f ≤ 1

a2

1

2(1 + κ)2 ∝ 1

a2 . (25)

Eq. (25) provides an estimate of the minimum forcing above
hich the FJ description is expected to fail in providing an

ccurate description of the transport properties in the long time
imit. The quantitative value of the critical force depends on
he level of the prescribed accuracy. The criterion demonstrates
ow the validity of the equilibrium approximation depends
n the relevant parameters of the problem and is concor-
ant with that found for a different scaling in Burada et al.
2007).

In order to test the accuracy of the FJ description, we evalu-
ted the behavior of the nonlinear mobility as a function of the
caled force f, for different values of a according to Eq. (16) and
ompared it with numerical simulations of the corresponding full
wo-dimensional problem. The value of the dimensionless force
up to which the FJ approximation with spatially dependent
iffusion coefficient DRR(x) provides an accurate description
epends on a just as predicted by Eq. (25), cf. Fig. 3. For large
alues of a the FJ equation starts to deviate from the numerically
xact behavior already for rather small forces f, whereas for small
alues of a larger forces may be applied without violating the
J equation.

In Fig. 4 the dependence of the nonlinear mobility on the
orce f is displayed for two different values of the parameter
characterizing the geometry of the channel. For the channel
ith a = 1 which, at its widest opening, is approximately four

ime as wide as it is long, the predictions of the equilibration
ssumptions fails at smaller f-values than in the case of a =
/2π.

. Transport Characteristics: Anomalous Temperature
ependence and Enhancement of Diffusion
Transport in one-dimensional periodic energetic poten-
ials behaves very differently from one-dimensional periodic
ystems with entropic barriers. The fundamental difference lies
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Fig. 4. (Color online) The numerically simulated (symbols) and analytically
calculated (cf. Eq. (16) – lines) dependence of the scaled nonlinear mobility
μ(f ) vs. the dimensionless force f = FL/kBT is depicted for two 2D chan-
nel geometries. For both channels the scaled half-width is given by ω(x) =
a
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Fig. 5. (Color online) The numerically simulated (symbols) and analytically
calculated (cf. Eq. (19) – lines) dependence of the effective diffusion coefficient
Deff is depicted vs. the dimensionless force f = FL/kBT for two channels in
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(sin(2πx) + 1.02); a = 1: diamonds and solid line (blue), a = 1/(2π): cir-
les and dashed line (green). The dotted line indicates the deterministic limit
(f ) = 〈ẋ〉/f = 1.

n the temperature dependence of these models. Decreasing
emperature in an energetic periodic potential decreases the tran-
ition rates from one period to the neighboring by decreasing
he Arrhenius factor exp{−�V/(kBT )} where �V denotes the
ctivation energy necessary to proceed by a period (Hänggi et
l., 1990). Hence decreasing temperature leads to a decreas-
ng mobility. For a one-dimensional periodic system with an
ntropic potential, a decrease of temperature leads to an increase
f the dimensionless force parameter f and consequently to an
ncrease of the mobility, cf. Fig. 4.

On the other hand, the dependence of the dynamics on the
eometry parameter a clearly reflects the entropic effects on
he mobility. A channel with a larger a value has wider open-
ngs and therefore provides more space where the particle can
ojourn. This longer residence time within a period of the chan-
el diminishes the throughput and consequently the mobility.
his is corroborated by the results of our calculations depicted

n Fig. 4. For all values of f, an increase in value of a leads
o a decrease in the mobility. This holds not only where the
J equation applies but also for large values of f where it
ails.

Another interesting effect can be observed for the effective
iffusion if looked as a function of the force f. Already the
xpression for the effective diffusion (19) which follows rig-
rously from the FJ equation displays a maximum as a function
f f which may even exceed the value 1 of the bare diffu-
ion, cf. Fig. 5. For f → ∞ the periodic stationary distribution
pproaches a delta function along the x axis and the effective
iffusion approaches the bare value 1. If one decreases the
orce to finite but still large values then the stationary distri-
ution acquires a finite width in the transversal direction with
“crowded” region in front of the narrowest place of the chan-
el (Burada et al., 2007). The transport becomes more noisy
nd consequently the effective diffusion exceeds the bare value
. On the other hand if one starts at f = 0 the entropic bar-

iers diminish the diffusion such that the effective diffusion is
ess than bare diffusion. Consequently, somewhere in between
here must be a value of f with maximal effective diffusion.
or a = 1 and b = 1.02 the value of the force at the maximal

t

v
a

D. For both channels the scaled half-width is given by ω(x) = a(sin(2πx) +
.02); a = 1: diamonds and solid line(blue), a = 1/(2π): circles and dashed line
green).

ffective diffusion is outside the regime of validity of the FJ equa-
ion. The numerical simulations give a much more pronounced
eak of the effective diffusion. For the less entropic channel
ith a = 1/2π the maximum is at the border of the regime of
alidity of the FJ equation, but the enhancement of the effec-
ive diffusion constant is less pronounced than for the larger
alue a = 1. These observations lead us to the conclusion that
ntropic effects increase the randomness of transport through a
hannel and in this way decrease the mobility and increase the
ffective diffusion. A similar enhancement of effective diffu-
ion was found in titled periodic energetic potentials (Reimann
t al., 2001; Lindner et al., 2001; Constantini and Marchesoni,
999).

. Conclusions

In summary, we demonstrated that transport phenomena in
eriodic channels with varying width exhibit some features that
re radically different from conventional transport occurring in
nergetic periodic potential landscapes. The most striking dif-
erence between these two physical situations lies in the fact that
or a fixed channel geometry the dynamics is completely char-
cterized by a single parameter f = FL/(kBT ) which combines
he external force F causing a drift, the period length L of the
hannel, and the thermal energy kBT , which is a measure of the
trength of the acting fluctuating forces. Transport in periodic
nergetic potentials depends, at least, on one further parameter
hich is the height of the highest barrier separating neighbor-

ng periods. This leads to an opposite temperature dependence
f the mobility. While the mobility of a particle in an energetic
otential increases with increasing temperature the mobility of
particle in a channel of periodically varying width decreases.
he incorporation of the spatial variation of the channel width
s an entropic potential in the FJ equation allows a qualitative
nderstanding of the dependence of the transport properties on

he channel geometry.

The effective diffusion exhibits a non-monotonic dependence
ersus the dimensionless force f. It starts out at small f with
value that is less than the bare diffusion constant, reaches a
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aximum with increasing f and finally approaches the value of
he bare diffusion from above.

It is known from the literature that, under certain condi-
ions, the two-dimensional Fokker–Planck equation governing
he time dependence of the probability density of a parti-
le in the channel can be approximated by a one-dimensional
okker–Planck equation: It is termed the Fick–Jacobs equation
nd contains an entropic potential and a position dependent dif-
usion coefficient. Various forms of the diffusion coefficient can
e found in the literature. A comparison of different forms for
particular channel geometry leads to the conclusion that the

xpression recently suggested by Reguera and Rubı́ yields the
ost favorable agreement. In principle the FJ equation describes

oth the transient behavior of a particle and also the stationary
ehavior of the particle dynamics which is approached in the
imit of large times, provided appropriate boundary conditions
onfining the motion in the direction of the channel axis are
pplied. In order to study stationary transport, periodic boundary
onditions must be invoked. We formulated criteria for the valid-
ty of the FJ equation for both the transient and the stationary
egimes and found that the restrictions imposed by the criterion
n the stationary regime are much less serious than those for
he transient dynamics. The estimates, which are based on sim-
le dynamical arguments, were corroborated by our numerical
imulations.

We restricted our analysis to two-dimensional channels. A
eneralization of the presented methods to three-dimensional
ores with varying cross-section is in principle straightforward.
e also confined ourselves to channels with a mirror symmetry

bout a vertical axis which in the present case can be chosen
t x = 1/4. For periodic channel shapes without this symme-
ry ratchet like transport can be expected even if the unbiased
orce f of vanishing temporal average changes periodically in
ime.
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