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Firing Time Statistics for Driven Neuron Models: Analytic Expressions versus Numerics
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Analytical expressions are put forward to investigate the forced spiking activity of abstract neuron
models such as the driven leaky integrate-and-fire model. The method is valid in a wide parameter
regime beyond the restraining limits of weak driving (linear response) and/or weak noise. The novel
approximation is based on a discrete state Markovian modeling of the full long-time dynamics with
time-dependent rates. The scheme yields excellent agreement with numerical Langevin and Fokker-
Planck simulations of the full nonstationary dynamics, not only for the first-passage time statistics, but
also for the important interspike interval (residence time) distribution.
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The detailed modeling of neural behavior presents a
prominent challenge on the intriguing vista towards the
understanding of neural coding principles. The leaky
integrate-and-fire (LIF) model, whose deterministic for-
mulation had been introduced long ago [1], likely is one of
the most studied abstract neuron models [2]. It is charac-
terized by marked simplicity and lack of memory:
Whenever the neuron has been excited to fire a pulse, it
is reset to a predefined state. The beneficial role of an
appreciable dose of noise has proven to bestow a key part
to the interspike statistics of neurons [2]. There exist by
now numerous studies and important generalizations of
realistic synaptic models, mostly of a numerical nature,
that demonstrate the rich behavior of the renewal firing
probability (e.g., see Refs. [3–5]).

In the presence of a time-dependent input stimulation,
the stochastic firing process becomes nonstationary,
which in turn significantly complicates the stochastic
firing statistics. Nevertheless, the signal transmission
and its detection can exhibit a remarkable improvement
via the phenomenon of stochastic resonance [6]. The
dynamics of the neuronal firing probability emerges due
to a large bombardment of synaptic spike events; conse-
quently, it is customary to employ a diffusion approxi-
mation for the stochastic dynamics of the membrane
potential x�t�. The complexity of the driven abstract LIF
model thus assumes the archetype, nonstationary
Langevin dynamics

_x�t� � ��x�t� ��� f�t� �
�������
2D

p
��t�; (1)

where the process starts at a time s at x�s� � x0 and fires
when it reaches the threshold voltage x � a. Here, f�t�
presents a general, time-dependent stimulus which, for
example, can be chosen to be oscillatory, and ��t� is
white Gaussian noise. The dynamics of the process x�t�
is equivalently described by a Fokker-Planck (FP) equa-
tion for the conditional probability density ��x; tjx0; s�
in a time-dependent quadratic potential, U�x; t� � ��x�
xmin�t�	2=2 with xmin�t� � ��� f�t��=�, reading
0031-9007=04=93(4)=048102(4)$22.50 
@t� � L�t�� � @x�U
0�x; t����D@2x�; (2)

with the absorbing boundary and initial conditions

��a; tjx0; s� � 0 for all t; s; and x0 (3)

��x; sjx0; s� � ��x� x0�: (4)

After firing the process immediately restarts at the in-
stantaneous minimum of the potential.

The set of Eqs. (1)–(4) defines our starting point for
obtaining the firing statistics of this driven neuron model.
This is a rather intricate problem because the presence of
nonstationarity and multiple time scales for driving and
relaxation, in combination with the absorbing boundary
condition, prohibits an analytical exact solution [7]. Our
main objective is, nevertheless, to develop a most accu-
rate analytical approximation that supersedes all prior
attempts known to us. Those attempts, in fact, all involve
the use of either of the following limiting approximation
schemes such as the limit of linear response theory [i.e., a
weak stimulus f�t�] [8], the limit of asymptotically weak
noise [6,9], or the use of the method of images which
appears to present an uncontrollable approximation for
the case with � � 0 [4,5]. A most appealing numerical
approach is based on an exact integral equation for the
first-passage time density of time-dependent Gauss-
Markov processes with an absorbing boundary [10]. Our
scheme detailed below yields novel analytic and tractable
expressions beyond the linear response and weak noise
limit; these are limited solely by the use of a discrete,
Markovian stochastic dynamics for the population of the
attracting domain and slowly varying (in comparison to
intrawell relaxation time-scale) stimuli f�t�. As demon-
strated below, this novel scheme indeed provides analyti-
cal formulas that compare very favorably with precise
numerical results of the full dynamics in Eqs. (1)–(4).
Different from other approaches, we obtain the distribu-
tion not only of the first-passage time but also of the
residence time, which is the more interesting variable,
concerning neurons.
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To start, we approximate the solution to Eqs. (2)–(4) in
the regime where the statistics of times at which the
threshold is reached can be characterized by a time-
dependent firing rate ��t� [7,11].

This rate then follows from a time-scale separation in
the full FP dynamics (2) with boundary condition (3).
After a few times ��1 of the fast relaxation the probabil-
ity density ��x; t� assumes a slowly varying pattern that
decays with the rate ��t�. As in the time-independent
case, this slowly varying part of ��x; t� can be expressed
by a product of the (normalized) instantaneous stationary
solution �0�x; t� / expf�U�x; t�=Dg to the FP equation,
satisfying L�t��0�x; t� � 0, and a form function ��x; t�.
Our ansatz thus reads

��x; tjx0; s� ’
�t�s�>��1

��x; t��0�x; t� exp
�
�

Z t

s
��s0� ds0

�
:

(5)

The initial time s enters only through the exponential
factor. The dependence of the conditional probability on
the initial value x0 decays exponentially on the time-scale
��1 and therefore can be neglected for long times.

Deep inside the attracting well, i.e., for x � a there is
no sensible difference between ��x; t� and �0�x; t�, and
consequently ��x; t� approaches one. At the absorbing
boundary, however, ��a; t� and, consequently, ��a; t�
both must vanish. The quantitative form of ��x; t� in the
crossover region follows from

L��t���x; t� � 0; (6)

where the potential in the backward operator L��t� �
�U0�x; t�@x �D@2x can be linearized about the threshold
x � a. Equation (6) then yields for the form function the
result

��x; t� � 1� exp
�
�x� a�

U0�a; t�
D

�
: (7)

The rate ��t� is determined by multiplying the long-time
limit of the FP equation (2) in the long-time limit (5) by
the form function ��x; t� and integrating over x from �1
to the threshold voltage a. In doing so, we account for
prominent finite barrier corrections, yielding

��t� � �

R
a
�1 dx ��x; t�L�t���x; t��0�x; t�R

a
�1 dx �2�x; t��0�x; t�

: (8)

Upon insertion of Eq. (7) for the form function, one can
exactly perform the integrations and obtain for the rate

��t� � �
�U�t�
D

1� erf�
��������������������
�U�t�=D

p
	

1� exp���U�t�=D	
; (9)

where �U�t� denotes the instantaneous potential height at
the threshold as seen from the minimum, and erf�z� is the
error function. For very small D, an expansion of the
error function leads to the well-known weak noise result
048102-2
for the time-dependent rate [6,7]; i.e.,

�wn�t� � �
���������������������������
�U�t�=��D�

p
exp���U�t�=D	: (10)

Firing time distributions.—With the expression for the
exit rate ��t� in (9), we can calculate the properties of
interest, namely, the densities for the first-passage time
and the residence time [12] of the attracting ‘‘integrating’’
state that covers the domain �1< x�t�< a.

The first-passage time distribution is given by the
negative rate of change of probability finding the process
at time t in the ‘‘integrating’’ state; i.e.,

g�tjs� � �@t
Z a

�1
��x; tjx0; s� dx (11)

� ��t� exp
�
�
Z t

s
��s0� ds0

�
; (12)

Here, the integral over the spatial part of ��x; t� yields
unity and the exponential factor in (5) is obtained. It gives
the probability for the process to stay in the ‘‘integrating’’
state from time s until t without interruption.

The distribution of the residence times h���, also
termed the interspike interval density, follows as the
average of the first-passage time density over the density
of resetting times s, which coincides with the firing rate
��s�. It thus reads

h��� � lim
T!1

R
T
�T g��� sjs���s� dsR

T
�T ��s� ds

: (13)

Eqs. (12) and (13), together with the expression for the
rate (9) constitute the main results of this work. Their
quantitative validity for an extended parameter regime
will be checked next.

Numerical comparison.—We have employed three
methods for the numerical analysis. A first one is based
on the Langevin equation (1) where the position x�t� is
updated sequentially. For the second, we have solved the
FP equation (2) numerically, using a Chebychev colloca-
tion method to reduce the problem to a coupled system of
ordinary differential equations (see also [13]). The third
method solves an integral equation for the first-passage
time probability density and is described in [10]. All three
methods have provided practically identical results.

In the prior stimulating work [4], it has been left open
in what relevant parameter regime the employed approxi-
mation possesses validity [5]. Here, using a periodic
modulation f�t� � A cos�!t�, we like to determine a
minimal set of relevant parameters that can be taken
for comparison with physiological measurements. The
most general Langevin equation (1) considered has seven
constant parameters, including the threshold a and the
reset-position x0. Three of them, ��;�; a�, can be
chosen to be (1,0,1) by transforming to dimensionless
coordinates, using the time-unit ��1, the space-unit �a�
�=��, and the coordinate-origin at �=�. The resulting
parameters thus read (the bars indicate dimensionless
coordinates)
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�A � A=��a���; �! � !=�;
�D �D=���a����2	:

(14)

For our purposes, it is advantageous to use instead the
equivalent set

�U �= �D; �U�= �D; and �!; (15)

where �U� and �U� are the maximum and the minimum of
�U�1; �t� during a whole period of modulation. These so

chosen parameters have the benefit that they provide an
on-hand estimate for the validity of our approximations
and can be evaluated directly from (1).

The equation we have used in our simulations thus
reads (omitting the overbars)

_x�t� � �x�t� � A cos�!t� �
�������
2D

p
��t�; (16)

with the threshold located at x � 1. For obtaining the
residence time, x has been reset into the minimum of
U�x; t� immediately after firing. Figs. 1 and 2 depict the
probability densities of the first-passage and the residence
times, respectively. The residence time distribution ex-
hibits a less pronounced modulation in comparison with
the first-passage time distribution. Both analytical ex-
pressions in (12) and (13) compare very favorably with
the numerical results obtained by iteration of the
Langevin equation (16). The remaining deviations in the
two figures are of purely statistical nature (see the inset of
Fig. 1) and can be diminished further by increasing the
number of events in the simulations.
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FIG. 1. First-passage time density for parameters U�=D � 8,
U�=D � 5, and ! � 0:05. The jagged line depicts the histo-
gram obtained from iterations of the Langevin equation in (16).
Note that fluctuations in the histogram depend on the total
number of events and the width of the histogram bins. These
fluctuations stay completely within their expected range which
is indicated as the gray shaded area in the inset. The height of
this area is twice the expected standard deviation of the
histogram levels. The solid line shows the analytic first-passage
time density from Eq. (12), with the rate used in (9). Both lines
are in excellent agreement.
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In order to further test the range of validity of our
novel approximation scheme, we—on purpose—have
chosen extreme values for the lower barrier height
U�=D and angular driving frequency !, respectively
(see Figs. 3 and 4). Here, deviations from the numerical
results are not the result of statistics but are systematic.
For the low potential barrier in Fig. 3, the time scales in
the process are not separated sufficiently. The fast intra-
well fluctuations begin to influence the behavior of the
modulated firing dynamics. Moreover, the difference be-
tween the moderate noise result for the time-dependent
rate ��t� in (9) and its weak noise approximation in (10)
becomes visibly increased, as expected. Figure 4 depicts
the other extreme situation with a modulation time-scale
that is not slow enough. Because the system cannot follow
the driving instantaneously, we find a shift in the maxima
of the first-passage time density. This shift is not repro-
duced by our approximation in (5) and (12); nevertheless,
our scheme yields amazingly good results even within
this extreme parameter regime. The results based on the
numerical evaluation of the FP Eq. (2) and the integral
Eq. (10) virtually collapse into one curve and perfectly
coincide with the Langevin simulations. The same result
was obtained for the other parameter values.

The precise theoretical modeling of the neuronal spik-
ing activity under external time-dependent driving
presents a challenge of considerable importance in neuro-
physiology and physics. Because of the presence of non-
stationarity, absorbing boundary conditions of the
underlying first-passage problem, and differing time
scales, the task of obtaining reliable analytical estimates
for the firing statistics is anything but trivial. By refer-
ence to a discrete Markovian dynamics for the corre-
sponding full space-continuous stochastic dynamics, we
succeeded in obtaining analytical approximations for the
time-dependent first-passage time and the residence time
statistics that are valid beyond the restraining limits of
linear response and asymptotically weak noise. We have
tested our findings for the case of a periodically driven
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FIG. 2. Residence time density vs time for the same parame-
ters as in Fig. 1. The jagged line shows the histogram obtained
from iterations of (16). Again, the numerics practically coin-
cides within the linewidth with the analytic expression in (13)
evaluated with the rate in (9) (solid line).
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FIG. 3. Testing extreme limits. First-passage time density for
an extremely small lower barrier U�=D � 3. The remaining
parameters are as in Fig. 1. Langevin simulation results ( jagged
line), analytical result in (12) with Eq. (9) (solid line), like-
wise, with Eq. (10) (dashed line). The inset compares the rate
��t� obtained from simulations of (16) with the analytic results
from Eqs. (9) and (10), respectively.
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LIF model. The obtained agreement with precise numeri-
cal simulations of either the Langevin type in (16) or,
equivalently, of the FP type in (2) turns out to be very
good. Our method is not restricted to an oscillatory forc-
ing but applies as well to arbitrary drive functions f�t�
such as an exponentially decaying drive (e.g., simulating
a decaying threshold). Our scheme even yields good
results in extreme parameter regimes where agreement
cannot be expected a priori.

Our method, primarily aimed at describing first-
passage time and residence time probabilities of driven
dynamical systems, is also readily extended to more
realistic neuron models such as, e.g., the two-dimensional
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FIG. 4. Testing extreme limits. Probability density of the
first-passage time for a very fast driving, ! � 0:5. The other
parameters are as in Fig. 1. The analytic approximation
[Eqs. (12) and (9), dashed line] still depicts maxima that are
approximately located at 1; 2; . . . while the numerical results
are shifted to later times. The jagged line presents the
Langevin-iterations from (16). The solid curve presents within
its linewidth both the numerical solution to the FP Eq. (2) and
to the integral equation from [10].
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driven FitzHugh-Nagumo model [14] for neuronal spik-
ing activity, whose multiple attractors may be considered
as discrete states. Likewise, the scheme can also be em-
ployed to study yet other time-dependent switching dy-
namics and synchronization phenomena such as the
paradigm of stochastic resonance [6] and discrete or con-
tinuous Brownian motor transport [15].
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