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Nonadiabatic Quantum Brownian Rectifiers
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We study bothdissipativeand nondissipativequantum transport in discrete Brownian rectifiers being
driven by nonthermalnoise that isunbiasedon average. In the absence of dissipation the current
is always zero and the ballistic diffusion changes into normal diffusion. The dissipative quantum
dynamics exhibits current (with distinctive reversals) as a result of the cooperative interplay between
dissipative forces and external fluctuations. Consideringnibrdinear current response to aperiodic,
noisy forces we predict aperiodic quantum stochastic resonance. The nonthermal fluctuations can
considerably enhance, as well as suppress, the thermal quantum diffusion. [S0031-9007(98)06616-2]

PACS numbers: 05.30.—d, 05.40.+j, 05.60.+w, 72.70.+m

The constructive role of nonthermal (deterministic ordependent, unbiased forces. The first téfy describes
stochastic) forces and equilibrium fluctuations for driventhe Hamiltonian of the bare multistate system
transport in one-dimensional periodic structures can gen- A
erate unexpected novel phenomena. In particular, new g, = _kA Z (n)n + 1] + |n + D)), @)
concepts such as fluctuation driven transport in periodic 2 s

structures that lack a reflection symmetry (ratchets) [1], Olyhere|n) denotes the localized (Wannier) states, Aads

the phenomenon of_ stochastic resonance [2] in thresho e tunneling coupling energy between neighboring states.
systems, boost the importance of nonthermal fluctuationgpo driving influence is characterized by

to a level, where it must be viewed as a source for or-

der and complexity in its own right. Directed current in _ N N

adiabaticallyrockedquantumratchets has been discussed Hex (1) eE (), 1= 4 ;nlnﬂnl - (@

only recently [3]. Other examples of anomalous transport

properties which do not exploit the ratchet mechanism haverherea is the lattice periodg is the position operator for

recently been investigated in driven periodic tight-bindingthe particle on the lattice, and (¢) is the external time-

(TB) lattices. In particular, an absolute negative conducdependent (generally random) electric field. Quantum dis-

tance near zero dc bias can be induced by the combinegipation is modeled by an ensemble of harmonic oscillators

effects of dc and ac fields [4], or dc field and external noisdilinearly coupled to the driven system [9]; i.e.,

[5]. In this Letter, our focus will be omontrol of quan- 1 2 C, 2

tum transport in periodic TB lattices, being solely driven  Hp = — Z[p—’ + m,»w,-z<x,- - — 6]) } 3

by unbiasedhonthermal noise. No current appears in the 2 S Lmi m;w;

absence of quantum dissipation. However, as a result of fhe environmental influences are fully captured by the

ratchetlike mechanism, a finite current occurs when quanspectral density (o) = (7/2) Y, ¢2/(m;iw;)8(w — w:).

tum equilibrium fluctuations interplay with (classical) non- The model (1)—(3) can be considered as a one-band trun-

thermal noise. We shall consider the resulting current irtation for the problem ofa quantum Brownian particle mo-

the whole regime of adiabatic-to-nonadiabatic fluctuationion in a driven periodic potential. This situation holds in

time scales of nonthermal unbiased forces. In additionghe |imit of high potential barriers when the particle dy-

we show that the current is maximal for an optimal valuenamics entails only tunneling between neighboring ground

T of the environmental temperature, this being a signaturetates. It is assumed that neither the temperature nor non-

of aperiodic quantum stochastic resonance thermal fluctuations can cause any essential population of
Because of the generality of the model, our results camjgher levels in the wells.

find application in a variety of physical and chemical sys- The statistical transport quantities of interest are the

tems. For example, new lithography and low temperamean particle positioty (1)) = a Y, np,(r) and the mean

ture techniques allow for fabrication and measurement o§quared positiorig?(¢)) = a2 Y., n?p.(t), with p,(¢) be-

the current-voltage characteristics in small Josephson jungng the site populations. In turn, the relevant transport

tions [6], or in suitably designed semiconductor superlatyyantities in the presence of unbiaseg(#) = 0) time-

tices [7]. Another potential class for applications is opticaldependent random foreg(r) = eaE,(1)// are the noise-

oo

|att|CeS fOI‘med by Interfel’lng beamS Of I|ght [8] averaged Stationary quantum Current

To start, we consider a single-band tight-binding Hamil-
tonian H(r) = Htg + H.(t) + Hg which accounts T = elim im (4)
both for quantum dissipation and external, generally time- ) =% dt ’
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and quantum diffusion coefficient with ¢ = /o2 — ¥%2/4, and y = v — 2io sinh(&/2).
| p Because the propagator (7) decays, the Bloch oscillations
D =— lim = 1 — (a(tDP 5 are exponentially suppressed.
2 A dt {la®) = <q@nF), ®) Next we focus on the quantum diffusion behavior by

. » . assuming a diagonal initial density matrix. Frég(r)) =
respectively. To be definite, we consider nonthermal ﬂ”C'—azF,’{’k(O 1) we find

tuations described by a kangaroo process. Such a stochas- J .

tic process randomly assumes discrete valgés = «;, L2 = 2Azf d7cosl &t . 8

i =1,...,N with probabilitiesw; = w(s,), >; w; = I, g (W) = A% | drcos|dlr. 7)] ®
and average sojourn time; = 1/»; in statee; [10]. it e(r) = 0, Eq.(8) vyields (42(1)) = (¢*(0)) +

In particular, an asymmetric dichotomic Markov process;2A2:2/: je., quantum diffusion is ballistic. In the
(DMP) is the simplest example of a kangaroo procesgase of a dc field(g(1)) oscillates with Bloch frequency
switching between two stateg(r) = {e1, &2} With flip 5/~ However, the combined action of a dc field and

rates vy, yielding the_stationary probabilities1» = nonthermal noise asymptotically leads (g (1)) — 2Dt
va1/(vi + wa). Fromm(s) = 0 it follows thate,;»; = with diffusion coefficientD = 1a2A2Red(is,.), with
—e2v1. The DMP is completely characterized by three in-¢ peing the Laplace-transformed Kubo propagator. For
dependent parameters: The noise variante= 72(1) = 3 DMP we obtain

e1]ez], the inverse autocorrelation time= (v, + v,)/2, s o

and the asymmetry measuge= In(|e,|/e;). Note that D = 1 Atova

DMPs with equalr and» but with different¢ possess the 2 (6qe — e 2)2(e4e + Ted/2)2 + p2e5,

same autocorrelation function(r)n (') = o2e =71, (9)

In order to clarify the role of quantum dissipation, let
us first consider the nondissipative dynamics.

Coherent dynamics—We characterize the particle by
the density matrixp,, (), with p,(t) = p,..(z) being the
site populations. Following the approach in [11], the char
acteristic functionF(k,t) = >, e p,(t), with —7 =
k < ar, can be evaluateskactlyfor arbitrary drivingZE (z).
The mean positioky (1)) = —iaF;(0,1) is given by

which approache® = A%a%v /207 for g4. — 0.

Dissipative dynamics—As just established, an initially
localized particle does not support a finite stationary
current in the absence of dissipation. We study here
the effects of quantum dissipation within the so-termed
noninteracting blip approximation (NIBA) leading to a
generalized master equation (GME) for the occupation
probabilities p,. It has been recently derived for an

t arbitrary driving field in [4] within a real-time path-
(q(t)) = {q(0)) + alKlA[ drsin[¢(7,0) + ¢], (6) integral approach, and in [5] by use of the small polaron
0 picture up to second order perturbation theory in the
with K = 1.(0), tane = IMK /ReK, ¢(t.7) = bath-renormalizgd intersite cqupling. As discussed in
[l e(r) dt’,zeyd)s(tl)’ (=)eaf(f)/ﬁ. This/exactre(faftion)has [9,13], a_md cpnﬂrmed by real—tl_me quantum Monte Cgrlo
some intriguing consequences. calculations in [14], the_ NIBA is a good approximation

(i) | Because the noise-average of the integral in (6) is bounded for any for a TB pamCIe at hlgh enough temperatures and/or

stochastic field, the stationary dc-current is always "zero™. 3. Consider a partidétrong dlSSIpatlon when transport proceeds by Sequentlal

prepared In a pure Iniial state aescribed by the GausdUnneling. The GME reads

ian wave packety(0)) = 3, c,|n), with ¢, = coe 2. SN (LS ()

Then, in the limits < 1, the coherence paramet&rin palt) = o W T)pa—i(7) + W, ) py (7)
(6) can be related to the wave packet widthd; i.e., () )

K ~ ¢~%/2. Next, switch on a dc-fielE (1) = E,.. In W 7) + W, Dlpa(m)}dT,

this case(¢q(r)) exhibits Bloch oscillations [12] with fre- (10)

quencys,. = eaZy./h, and with spatial amplituddq =  with forward (+) and backward—) integral kernel

hA|K|/eE,.. For mixed states described with a diagonal 1

density matrix (K= 0), (6) yields{(g(2)) = (¢(0)). W, 1) = — A% 2D eos['(t — 1) F (1, 7)].
(i) Next consider the influence of additional unbiased 2

fluctuationsn(¢) on the Bloch oscillations; i.e.g(r) = (11)

eqc + m(t). The average of (6) over f[he external noise (11), 0'(r) and Q"(r) are the real and imaginary parts,
reduces to the evaluation of the noise-averaged KUbespectiver, of the bath correlation function [9]

propagatod(r — 7) = exp(iffr n(¢') dt’). For ageneral 2 o J(w)
kangaroo process this latter problem can be solved exactly  Q(r) = a j do =2

[10]. For a DMP the complex-valued propagator is h >
y cosh(Fiw/2) — cosh[w(gﬁ— it)]
Ppyp(r) = e P[eos(d) + (x/20)sin¢n],  (7) sinh(Bhw/2) ’
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whereT = 1/kgp is the temperature. The integrodiffer- 04
ential equation for the characteristic functigfk, r) stem-
ming from (10) yields

%(q(t)) = aj;) I'@¢,ndr, (12)

o
o

e
bo

S0y = a* [ ar(rt e + 20 () e)/al.

js¢ (in units of eaA?/2w,

with T'* = w) = w5 Again, for vanishing dissipa-
tion (12) predicts no current, in agreement with the above 0

exact discussion, and (13) reduces to (8). Equation (12) 8 10

can be averagedxactlyover the external noise for any

kangaroo process. This yields the main result FIG. 1. Stationary current/, vs noise strengtho for a
dichotomic Markov process with zero mean and asymmetry

. , [ . parameter ¢ = 1/2. The solid line depicts the adiabatic
Js = eal ]0 dtexg—Q'(r)]sin Q" (1)]Im[®(1)]. approximation. The dashed and dot-dashed lines correspond

to inverse autocorrelation time# = 0.lw, and v = w,,
(14) respectively. The chosen temperaturekjd = 0.2/iw. and

Although no static bias is present, the stationary currenge‘se?garr:; fSr![?(t)lgn f\ﬁlggﬁ'f)‘zzs I The inset depicts a current
is found to benonzerofor unbiasednoisen(r) = 0 (rec- g '

tification effect) whenever higher order odd moments are . , - p

nonzero (asymmetric noise). Consider the case of asyn2l: Yielding Q(¢) = Zaw 1Kl and 0 ,(t) =~ 200l
metric DMP. Ther () in (14) is given by (7). Forasym- Wheréres = 1/2 + «*¥'(1 + «) with ¥'(z) being the
metric DMP (asymmetry = 0) the propagato®pyp () derivative of the phgamma functlor), anq= kpT /how,.

is real, and there igo current. If¢ # 0, a finite current 10 lowest order ino and ¢ the adiabatic current reads

appears. In the adiabatic limit, < ., v < o, we can  eXplicitly

40/%6

approximateb (t) = ®,q(r) = >, w;e'®’. From (14) this A= A2 —a)2k.
yields the adiabatic curredty = > ; w;J;, whereJ; is the Jog = — 27 eiA ¢ 7/2 <l - @>§U3. (15)
dc current which corresponds to thé discrete value; of 640 Ja ki \3 @

; o 13(1) ~ 3 . .
the nonthermal noise. Thely * 7°(r) ~ &0 for small Thus, (15) predicts @hange of signof the current, as

a "’!”dg- He_nce, the appearance of Qirecte_d trans_port i%\/ell as a maximum of|J,4|, which depends both on
a highly nonlinear cooperative effect, involving the inter- temperature and on dissipation strength
play between the asymmetric driving and quantum dis-" 1o eyajuation of the noise average for the quantum

sipation. Undil now the above re_sults are vaI|d_ for_ any giffusion in (5) presents a difficult task: Here, we restrict
dissipation mechanism. We consider next Ohmic friction

with a spectral density(w) = Q7 li/a*)awe ™/, cut-

off w. > A, and dimensionless friction strength [9]. ' '
This allows for an exact analytical evaluation of the bath
correlation functionQ(¢). Hence, (14) with (7) allows for

a numerical calculation (within the NIBA) of the station-
ary currentJ, induced by a DMP over the whole non-
adiabatic regime. Jy is depicted vs fluctuation strength
o = +Jeile,] in Fig. 1. We note that distinct deviations
occur for nonadiabatic, nonthermal DMP—driving from
its adiabatic limit (full line in Fig. 1). The absolute value
|Js¢| is maximal at some optimal value of. Moreover, as
depicted in the inset, theign of the current can change as
the damping strength is increased. The temperature de- kT /hw,
pendence of the current is plotted in Fig. 2. At certain val- ¢
ues of the parameter| exhibits a maximum. Because FIG. 2. Aperiodic quantum stochastic resonance (AQSR).
the current appears as the nonlinear response tajhe The solid line depicts the stationary currgtvs temperaturd

riodic external signal, the existence of this maximum caro’ ¢ = 0-5¢. ando = 7w, (dashed line). Other parameters
be interpreted as a signature of aperiodic quantum stochaaw. - 0.loc, £ =1, anda = 1. The occurrence of the
p g p q faximum of |J,| is a signature of AQSR. The inset for

tic resonance [15]. In order to elucidate these results wg — .50, depicts a current reversal vs temperature at fixed
apply a short-time approximation valid for large friction friction strengtha = 5.

o
o

I
=

Js¢ (in units of eaA?/2w,)

o

o

1
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4

o /w,

FIG. 3. The scaled fluctuation driven quantum diffusion
D/Dy vs noise strengtho for various asymmetry parame-
ters ¢ =0 (solid line), ¢ =1 (dashed line), and¢ = 2
(dash-dotted line). Dy = D(o = 0) denotes the diffusion

diffusion that characterizes Wannier-Stark localization. In
contrast, a noise-directed current always occurs hisa
sipative TB lattice in the presence of unbiased, asym-
metric forcing. This rectification effect isobust e.g.,
it is manifest also for harmonic mixing signals(s) =
c1cogQt) + ¢, co9201) [16]. Current reversals do oc-
cur both vs noise strengttt (Fig. 1) and vs temperature
T (Fig. 2). This driven system also exhibits signatures
of aperiodic quantum stochastic resonance, as well as a
suppressed diffusion as compared to that of the undriven
quantum Brownian system. These novel surprising fea-
tures regarding rectification, current reversal, and control
of diffusion are expected to be observable in already fab-
ricated superlattices [7] and/or in optical lattices [8].

The authors thank Peter Reimann for insightful dis-
cussions. Financial support was provided (I.G.) by the
Alexander von Humboldt-Stiftung and (M. G., P.H.) by

coefficient in the absence of nonthermal noise. For small the Deutsche Forschungsgemeinschaft (HAY514-2).

the diffusion is strongly enhanced. This effect is maximal for

a symmetric (i.e.£ = 0) dichotomic noise. Other parameters
arev = 00lw., A = 0.1w,, k3T = 02hw,., anda = 1.
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