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Nonadiabatic Quantum Brownian Rectifiers
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We study bothdissipativeandnondissipativequantum transport in discrete Brownian rectifiers bein
driven by nonthermalnoise that isunbiasedon average. In the absence of dissipation the curre
is always zero and the ballistic diffusion changes into normal diffusion. The dissipative quan
dynamics exhibits current (with distinctive reversals) as a result of the cooperative interplay betw
dissipative forces and external fluctuations. Considering thenonlinear current response to aperiodic,
noisy forces we predict aperiodic quantum stochastic resonance. The nonthermal fluctuation
considerably enhance, as well as suppress, the thermal quantum diffusion. [S0031-9007(98)0661

PACS numbers: 05.30.–d, 05.40.+j, 05.60.+w, 72.70.+m
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The constructive role of nonthermal (deterministic o
stochastic) forces and equilibrium fluctuations for drive
transport in one-dimensional periodic structures can ge
erate unexpected novel phenomena. In particular, n
concepts such as fluctuation driven transport in period
structures that lack a reflection symmetry (ratchets) [1],
the phenomenon of stochastic resonance [2] in thresh
systems, boost the importance of nonthermal fluctuatio
to a level, where it must be viewed as a source for o
der and complexity in its own right. Directed current in
adiabaticallyrockedquantumratchets has been discusse
only recently [3]. Other examples of anomalous transpo
properties which do not exploit the ratchet mechanism ha
recently been investigated in driven periodic tight-bindin
(TB) lattices. In particular, an absolute negative condu
tance near zero dc bias can be induced by the combin
effects of dc and ac fields [4], or dc field and external nois
[5]. In this Letter, our focus will be oncontrol of quan-
tum transport in periodic TB lattices, being solely drive
by unbiasednonthermal noise. No current appears in th
absence of quantum dissipation. However, as a result o
ratchetlike mechanism, a finite current occurs when qua
tum equilibrium fluctuations interplay with (classical) non
thermal noise. We shall consider the resulting current
the whole regime of adiabatic-to-nonadiabatic fluctuatio
time scales of nonthermal unbiased forces. In additio
we show that the current is maximal for an optimal valu
T of the environmental temperature, this being a signatu
of aperiodic quantum stochastic resonance.

Because of the generality of the model, our results c
find application in a variety of physical and chemical sys
tems. For example, new lithography and low temper
ture techniques allow for fabrication and measurement
the current-voltage characteristics in small Josephson ju
tions [6], or in suitably designed semiconductor superla
tices [7]. Another potential class for applications is optica
lattices formed by interfering beams of light [8].

To start, we consider a single-band tight-binding Hami
tonian Hstd ­ HTB 1 Hextstd 1 HB which accounts
both for quantum dissipation and external, generally tim
0031-9007y98y81(3)y649(4)$15.00
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dependent, unbiased forces. The first termHTB describes
the Hamiltonian of the bare multistate system

HTB ­ 2
h̄D

2

X̀
n­2`

sjnl kn 1 1j 1 jn 1 1l knjd , (1)

wherejnl denotes the localized (Wannier) states, andh̄D is
the tunneling coupling energy between neighboring state
The driving influence is characterized by

Hextstd ­ 2eE stdq̂, q̂ ­ a
X
n

njnl knj , (2)

wherea is the lattice period,̂q is the position operator for
the particle on the lattice, andE std is the external time-
dependent (generally random) electric field. Quantum di
sipation is modeled by an ensemble of harmonic oscillato
bilinearly coupled to the driven system [9]; i.e.,

HB ­
1
2

X
i

∑
p2

i

mi
1 miv

2
i

µ
xi 2

ci

miv
2
i

q̂

∂2∏
. (3)

The environmental influences are fully captured by th
spectral densityJsvd ­ spy2d

P
i c2

i ysmividdsv 2 vid.
The model (1)–(3) can be considered as a one-band tru
cation for the problem of a quantum Brownian particle mo
tion in a driven periodic potential. This situation holds in
the limit of high potential barriers when the particle dy
namics entails only tunneling between neighboring groun
states. It is assumed that neither the temperature nor n
thermal fluctuations can cause any essential population
higher levels in the wells.

The statistical transport quantities of interest are th
mean particle positionkqstdl ­ a

P
n npnstd and the mean

squared positionkq2stdl ­ a2
P

n n2pnstd, with pnstd be-
ing the site populations. In turn, the relevant transpo
quantities in the presence of unbiased (hstd ­ 0) time-
dependent random forcehstd ­ eaEhstdyh̄ are the noise-
averaged stationary quantum current

Jst ­ e lim
t!`

d
dt

kqstdl , (4)
© 1998 The American Physical Society 649
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and quantum diffusion coefficient

D ­
1
2

lim
t!`

d
dt

kfqstd 2 kqstdlg2l , (5)

respectively. To be definite, we consider nonthermal flu
tuations described by a kangaroo process. Such a stoc
tic process randomly assumes discrete valueshstd ­ ´i ,
i ­ 1, . . . , N with probabilitieswi ­ ws´id,

P
i wi ­ 1,

and average sojourn timeti ­ 1yni in state ´i [10].
In particular, an asymmetric dichotomic Markov proces
(DMP) is the simplest example of a kangaroo proce
switching between two stateshstd ­ h´1, ´2j with flip
rates n1,2, yielding the stationary probabilitiesw1,2 ­
n2,1ysn1 1 n2d. From hstd ­ 0 it follows that ´1n2 ­
2´2n1. The DMP is completely characterized by three in
dependent parameters: The noise variances2 ­ h2std ­
´1j´2j, the inverse autocorrelation timen ­ sn1 1 n2dy2,
and the asymmetry measurej ; lnsj´2jy´1d. Note that
DMPs with equals andn but with differentj possess the
same autocorrelation functionhstdhst0d ­ s2e2njt2t0j.

In order to clarify the role of quantum dissipation, le
us first consider the nondissipative dynamics.

Coherent dynamics.—We characterize the particle by
the density matrixrn,mstd, with pnstd ; rn,nstd being the
site populations. Following the approach in [11], the cha
acteristic functionFsk, td ­

P
n eiknpnstd, with 2p #

k , p, can be evaluatedexactlyfor arbitrary drivingE std.
The mean positionkqstdl ­ 2iaF0

ks0, td is given by

kqstdl ­ kqs0dl 1 ajKjD
Z t

0
dt sinffst, 0d 1 wg , (6)

with K ­
P

n rn21,ns0d, tanw ­ Im KyReK, fst, td ­Rt
t ´st0d dt0, and´std ­ eaE stdyh̄. Thisexactrelation has

some intriguing consequences.
(i) Because of the boundness of (6) forany field, the

stationary dc current is always zero. Consider a partic
prepared in a pure initial state described by the Gau
ian wave packetjcs0dl ­

P
n cnjnl, with cn ­ c0e2dn2

.
Then, in the limitd ø 1, the coherence parameterK in
(6) can be related to the wave packet width1yd; i.e.,
K , e2dy2. Next, switch on a dc-fieldE std ­ Edc. In
this casekqstdl exhibits Bloch oscillations [12] with fre-
quencý dc ­ eaEdcyh̄, and with spatial amplitudeDq ­
h̄DjKjyeEdc. For mixed states described with a diagon
density matrix (K­ 0), (6) yieldskqstdl ­ kqs0dl.

(ii) Next consider the influence of additional unbiase
fluctuationshstd on the Bloch oscillations; i.e.,́ std ­
´dc 1 hstd. The average of (6) over the external nois
reduces to the evaluation of the noise-averaged Ku
propagatorFst 2 td ­ expsi

Rt
t hst0d dt0d. For a general

kangaroo process this latter problem can be solved exa
[10]. For a DMP the complex-valued propagator is

FDMP std ­ e2yty2fcossztd 1 sxy2z d sinsz tdg , (7)
650
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with z ­
p

s2 2 x2y4, and x ­ n 2 2is sinhsjy2d.
Because the propagator (7) decays, the Bloch oscillatio
are exponentially suppressed.

Next we focus on the quantum diffusion behavior b
assuming a diagonal initial density matrix. Fromkq2stdl ­
2a2F00

kks0, td we find

d
dt

kq2stdl ­ a2D2
Z t

0
dt cosffst, tdg . (8)

With ´std ­ 0, Eq. (8) yields kq2stdl ­ kq2s0dl 1

a2D2t2y2; i.e., quantum diffusion is ballistic. In the
case of a dc field,kq2stdl oscillates with Bloch frequency
´dc. However, the combined action of a dc field an
nonthermal noise asymptotically leads tokq2stdl ! 2Dt
with diffusion coefficientD ­ 1

2 a2D2 ReF̃si´dcd, with
F̃ being the Laplace-transformed Kubo propagator. F
a DMP we obtain

D ­
1
2

D2s2na2

s´dc 2 se2jy2d2s´dc 1 sejy2d2 1 n2´
2
dc

,

(9)

which approachesD ­ D2a2ny2s2 for ´dc ! 0.
Dissipative dynamics.—As just established, an initially

localized particle does not support a finite stationa
current in the absence of dissipation. We study he
the effects of quantum dissipation within the so-terme
noninteracting blip approximation (NIBA) leading to a
generalized master equation (GME) for the occupati
probabilities pn. It has been recently derived for an
arbitrary driving field in [4] within a real-time path-
integral approach, and in [5] by use of the small polaro
picture up to second order perturbation theory in th
bath-renormalized intersite coupling. As discussed
[9,13], and confirmed by real-time quantum Monte Car
calculations in [14], the NIBA is a good approximation
for a TB particle at high enough temperatures and/
strong dissipation when transport proceeds by sequen
tunneling. The GME reads

Ùpnstd ­
Z t

0
hW s1dst, tdpn21std 1 W s2dst, tdpn11std

2 fW s1dst, td 1 W s2dst, tdgpnstdj dt ,
(10)

with forward s1d and backwards2d integral kernel

W s6dst, td ­
1
2

D2e2Q0st2td cosfQ00st 2 td 7 fst, tdg .

(11)

In (11), Q0std andQ00std are the real and imaginary parts
respectively, of the bath correlation function [9]

Qstd ­
a2

h̄p

Z `

0
dv

Jsvd
v2

3
coshsbh̄vy2d 2 coshfvs b

2 2 itdg
sinhsbh̄vy2d

,
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whereT ­ 1ykBb is the temperature. The integrodiffer
ential equation for the characteristic functionFsk, td stem-
ming from (10) yields

d
dt

kqstdl ­ a
Z t

0
G2st, td dt , (12)

d
dt

kq2stdl ­ a2
Z t

0
dt fG1st, td 1 2G2st, td kqstdlyag .

(13)

with G6 ­ W s1d 6 W s2d. Again, for vanishing dissipa-
tion (12) predicts no current, in agreement with the abo
exact discussion, and (13) reduces to (8). Equation (
can be averagedexactlyover the external noise for any
kangaroo process. This yields the main result

Jst ­ eaD2
Z `

0
dt expf2Q0stdg sinfQ00stdg ImfFstdg .

(14)

Although no static bias is present, the stationary curre
is found to benonzerofor unbiasednoisehstd ­ 0 (rec-
tification effect) whenever higher order odd moments a
nonzero (asymmetric noise). Consider the case of asy
metric DMP. ThenFstd in (14) is given by (7). For a sym-
metric DMP (asymmetryj ­ 0) the propagatorFDMP std
is real, and there isno current. Ifj fi 0, a finite current
appears. In the adiabatic limit,n ø vc, n ø s, we can
approximateFstd ø Fadstd ­

P
i wiei´i t. From (14) this

yields the adiabatic currentJad ­
P

i wiJi , whereJi is the
dc current which corresponds to theith discrete valué i of
the nonthermal noise. ThenJad ~ h3std ø js3 for small
s and j. Hence, the appearance of directed transpor
a highly nonlinear cooperative effect, involving the inte
play between the asymmetric driving and quantum d
sipation. Until now the above results are valid for an
dissipation mechanism. We consider next Ohmic frictio
with a spectral densityJsvd ­ s2p h̄ya2dave2vyvc , cut-
off vc ¿ D, and dimensionless friction strengtha [9].
This allows for an exact analytical evaluation of the ba
correlation functionQstd. Hence, (14) with (7) allows for
a numerical calculation (within the NIBA) of the station
ary currentJst induced by a DMP over the whole non
adiabatic regime.Jst is depicted vs fluctuation strength
s ­

p
´1j´2j in Fig. 1. We note that distinct deviations

occur for nonadiabatic, nonthermal DMP—driving from
its adiabatic limit (full line in Fig. 1). The absolute value
jJstj is maximal at some optimal value ofs. Moreover, as
depicted in the inset, thesignof the current can change a
the damping strengtha is increased. The temperature de
pendence of the current is plotted in Fig. 2. At certain va
ues of the parameters,jJstj exhibits a maximum. Because
the current appears as the nonlinear response to theape-
riodic external signal, the existence of this maximum ca
be interpreted as a signature of aperiodic quantum stoch
tic resonance [15]. In order to elucidate these results
apply a short-time approximation valid for large frictio
-
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FIG. 1. Stationary currentJst vs noise strengths for a
dichotomic Markov process with zero mean and asymmet
parameter j ­ 1y2. The solid line depicts the adiabatic
approximation. The dashed and dot-dashed lines correspo
to inverse autocorrelation timesn ­ 0.1vc and n ­ vc,
respectively. The chosen temperature iskBT ­ 0.2h̄vc and
the Ohmic friction value isa ­ 1. The inset depicts a current
reversal at strong frictiona ­ 5.

[5], yielding Q0std ø 2av2
c t2keff and Q00std ø 2avct,

wherekeff ­ 1y2 1 k2C0s1 1 kd with C0szd being the
derivative of the digamma function, andk ­ kBTyh̄vc.
To lowest order ins and j the adiabatic current reads
explicitly

Jad ø 2

p
2p eaD2

64v4
c

e2ay2keff

p
a k

7y2
eff

µ
1
3

2
keff

a

∂
js3. (15)

Thus, (15) predicts achange of signof the current, as
well as a maximum ofjJadj, which depends both on
temperature and on dissipation strengtha.

The evaluation of the noise average for the quantu
diffusion in (5) presents a difficult task: Here, we restric

FIG. 2. Aperiodic quantum stochastic resonance (AQSR
The solid line depicts the stationary currentJst vs temperatureT
for s ­ 0.5vc ands ­ 7vc (dashed line). Other parameters
are n ­ 0.1vc, j ­ 1, and a ­ 1. The occurrence of the
maximum of jJstj is a signature of AQSR. The inset for
s ­ 0.5vc depicts a current reversal vs temperature at fixe
friction strengtha ­ 5.
651



VOLUME 81, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 20 JULY 1998

In

-

s
s a
en
a-
rol
b-

s-
e

i,

t.

.

,

FIG. 3. The scaled fluctuation driven quantum diffusion
DyD0 vs noise strengths for various asymmetry parame-
ters j ­ 0 (solid line), j ­ 1 (dashed line), andj ­ 2
(dash-dotted line). D0 ; Dss ­ 0d denotes the diffusion
coefficient in the absence of nonthermal noise. For smalls
the diffusion is strongly enhanced. This effect is maximal fo
a symmetric (i.e.,j ­ 0) dichotomic noise. Other parameters
aren ­ 0.01vc, D ­ 0.1vc, kBT ­ 0.2h̄vc, anda ­ 1.

ourselves to the adiabatic approximation within the Ma
kov limit of (10). This enables us to evaluate analyticall
the adiabatic diffusion coefficientDad for an arbitrary
kangaroo process. For a DMP we obtain

Dad ­
a2

4 coshsjy2d
fejy2g1

1 1 e2jy2g1
2 g

1
a2

4n cosh2sjy2d
fg2

1 1 g2
2 g2, (16)

whereg6
i ­

Rt!`

0 G6st, td dt with fst, td ­ ´ist 2 td.
We note that, in the limit of vanishing dissipation, (16
does not reduce to the exact limitD ­ D2a2ny2s2 de-
rived below (9). This flaw originates from the breakdown
of the Markov approximation for weak dissipation. As de
picted with Fig. 3, diffusion can be either increased or de
creased, as compared to the case of zero nonthermal no
(s ­ 0) with diffusion coefficient

D0 ­
1
2

a2D2
Z `

0
dt expf2Q0stdg cosfQ00stdg . (17)

Strong asymmetryj tends to smear out this effect.
In summary, we have found several new phenomena f

nonthermally driven periodic quantum systems as repr
sented by a TB Hamiltonian. For zero quantum dissipatio
we observe a characteristic suppression of Bloch oscil
tions, as well as identically vanishing current. Moreove
we find a nonthermal noise induced crossover from ba
listic (at zero dc bias) to normal diffusion. With noise
strengths approaching zero the corresponding diffusio
coefficient in (9) tends to infinity. Note also that the
switch-on of finite nonthermal noise overcomes the ze
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diffusion that characterizes Wannier-Stark localization.
contrast, a noise-directed current always occurs in adis-
sipative TB lattice in the presence of unbiased, asym
metric forcing. This rectification effect isrobust; e.g.,
it is manifest also for harmonic mixing signals,´std ­
c1 cossVtd 1 c2 coss2Vtd [16]. Current reversals do oc-
cur both vs noise strengths (Fig. 1) and vs temperature
T (Fig. 2). This driven system also exhibits signature
of aperiodic quantum stochastic resonance, as well a
suppressed diffusion as compared to that of the undriv
quantum Brownian system. These novel surprising fe
tures regarding rectification, current reversal, and cont
of diffusion are expected to be observable in already fa
ricated superlattices [7] and/or in optical lattices [8].
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